М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
1941г3
1941г3
22.03.2020 04:36 •  Алгебра

Неподскажите что за сборник и какого года?

👇
Ответ:
невидома
невидома
22.03.2020

мерзляк

полонский

якир

2017

4,7(73 оценок)
Открыть все ответы
Ответ:
75545
75545
22.03.2020
Пусть неизвестное целое число равно х, 
тогда х-1 и х+1 - целые числа, расположенные слева и справа
 от числа х, соответственно.
По условию, сумма квадратов данных чисел равна 869.
Составим уравнение:
(х-1)²+х²+(х+1)²=869
х²-2х+1+х²+х²+2х+1=869
3х²+2=869
3х²=869-2
3х²=867
х²=867:3
х²=289
х=б \sqrt{289}
x=б17

1) x=17
    x-1=17-1=16
    x+1=17+1=18
    Получаем, 16, 17 и 18 - три последовательных целых числа
    Проверка: 16²+17²+18²=256+289+324=869
2) х=-17
    х-1=-17-1=-18
    х+1=-17+1=-16
    Получаем, -18, -17 и -16 - три последовательных целых числа
    Проверка:(-18)²+(-17)²+(-16)²=324+289+256=869

ответ: 16, 17 и 18;  -18, -17 и -16
4,8(14 оценок)
Ответ:
lidiyaerox28
lidiyaerox28
22.03.2020

ответ:Допустим, у нас есть бесконечно малые при одном и том же {\displaystyle x\to a} x\to a величины {\displaystyle \alpha (x)} \alpha(x) и {\displaystyle \beta (x)} \beta(x) (либо, что не важно для определения, бесконечно малые последовательности).

Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=0} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=0, то {\displaystyle \beta } \beta — бесконечно малая высшего порядка малости, чем {\displaystyle \alpha } \alpha . Обозначают {\displaystyle \beta =o(\alpha )} \beta =o(\alpha ) или {\displaystyle \beta \prec \alpha } \beta\prec\alpha.

Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=\infty } \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=\infty , то {\displaystyle \beta } \beta — бесконечно малая низшего порядка малости, чем {\displaystyle \alpha } \alpha . Соответственно {\displaystyle \alpha =o(\beta )} \alpha =o(\beta ) или {\displaystyle \alpha \prec \beta } \alpha\prec\beta.

Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=c} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=c (предел конечен и не равен 0), то {\displaystyle \alpha } \alpha и {\displaystyle \beta } \beta являются бесконечно малыми величинами одного порядка малости. Это обозначается как {\displaystyle \alpha \asymp \beta } \alpha\asymp\beta или как одновременное выполнение отношений {\displaystyle \beta =O(\alpha )} \beta =O(\alpha ) и {\displaystyle \alpha =O(\beta )} \alpha =O(\beta ). Следует заметить, что в некоторых источниках можно встретить обозначение, когда одинаковость порядков записывают в виде только одного отношения «о большое», что является вольным использованием данного символа.

Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha ^{m}}}=c} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha ^{m}}}=c (предел конечен и не равен 0), то бесконечно малая величина {\displaystyle \beta } \beta имеет {\displaystyle m} m-й порядок малости относительно бесконечно малой {\displaystyle \alpha } \alpha .

Для вычисления подобных пределов удобно использовать правило Лопиталя.

4,4(37 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ