Пусть
а1 = 2 - количество очков, набранных за первую минуту игры,
а2 = 4 - количество очков, набранных за вторую минуту,
а3 = 8 - количество очков, набранных за третью минуту,
.......
an - количество очков, набранных за последнюю минуту.
Количество очков постоянно удваивается, значит дело мы имеем с геометрической прогрессией со знаменателем q = 2.
Каждую минуту очки суммируются, т.е. актуальна будет формула суммы первых n членов прогрессии. Формула выглядит так:
Sn=b1(q^n-1)/q-1, q не равно 1.
К тому же, эта сумма должна быть не меньше 10 000.
Подставляя известные величины в формулу, получим такое неравенство:
2(2^n-1)/2-1>10 000
2^n-1>5000
2^n>5001
Ничего не остается, как вручную подобрать n.
При n = 13 выражение 2n будет больше 5001 (2^13 = 8192). Это значит, что через 13 минут Митя наберет больше 10 000 очков и перейдет на следующий уровень.
Не очень понятно ---за что столько ... формулу для вычисления площади треугольника можно доказать, достроив треугольник до параллелограмма (площадь параллелограмма = a*h) параллелограмм состоит из двух равных треугольников => площадь треугольника будет = a*h /2 а высоту можно записать, используя определение синуса (если уже знакомы с тригонометрией...) углы равностороннего треугольника равны и = 180/3 = 60 градусов sin(60) = V3 / 2 по определению синуса: h /a = sin(60) отсюда h = a*V3 / 2 S = a*a*V3 / 4