 
                                                 
                                                а - длина прямоугольника
b - ширина прямоугольника
=================================================================
Р=28 м
S=40 м²
а - ? м
b - ? м
 (1)
              (1)
 (2)
                        (2)
из формулы площади прямоугольника (2) выводим формулу нахождения ширины

подставляем в формулу периметра прямоугольника (1)
 
 
 
 

 /·a
 /·a
умножаем на а для того, чтобы избавится от знаменателя


подставим в уравнение данные P и S




Квадратное уравнение имеет вид:
 
Cчитаем дискриминант:

Дискриминант положительный

Уравнение имеет два различных корня:


Следовательно стороны равны 10м и 4м соответственно
ответ: 10м и 4м стороны прямоугольника.
Проверка:
Р=2(а+b)=2(10+4)=2·14=28 (м)
S=a·b=10·4=40 (м²)
 
                                                По определению, 
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение 
2) 

А значит, если взять ![N=\left[\dfrac{|a|}{\varepsilon}\right] +1](/tpl/images/3820/0626/0d89e.png) (*),
 (*),  . И правда:
. И правда: 
(*) Очевидно, что для любого допустимого значения  выражение
 выражение ![\left[\dfrac{|a|}{\varepsilon}\right] +1](/tpl/images/3820/0626/ae843.png) определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)  

 
А значит, если взять ![N=\left[\dfrac{3}{\varepsilon}\right] +1](/tpl/images/3820/0626/a4ca4.png) (**),
 (**),  . И правда:
. И правда: ![\dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|](/tpl/images/3820/0626/49458.png)
(**) Очевидно, что для любого допустимого значения  выражение
 выражение ![\left[\dfrac{3}{\varepsilon}\right] +1](/tpl/images/3820/0626/698f8.png) определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда 
4)
 
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 
 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                
16ab²-5b²c-10c³+32ac²=b²(16a-5c)-2c²(16а-5с)=(16а-5с)(b²-2c²)