В решении.
Объяснение:
1.
а) b/√7 * √7/√7 = b√7/7;
б) 5/√x *√x/√x = 5√x/x;
в) 5/3√6 *√6/√6 = 5√6/3*6 = 5√6/18;
г) 12/7√2 *√2/√2 = 12√2/7*2 = 12√2/14 = 6√2/7;
д) 1/√3 * √3/√3 = √3/3;
е) 5/4√5 * √5/√5 = 5√5/4*5 = 5√5/20 = √5/4.
2.
а) 2/(√c+y) * (√c+y)/(√c+y) = 2(√c+y)/(c+y);
б) 6/(√5 + 1) * (√5 - 1)/(√5 - 1) =
в знаменателе развёрнутая разность квадратов, свернуть:
= 6(√5 - 1)/(√5)² - 1² =
= 6(√5 - 1)/(5 - 1) =
= 6(√5 - 1)/4 =
= 3(√5 - 1)/2;
в) с/(√a - √c) * (√a + √c)/(√a + √c) =
в знаменателе развёрнутая разность квадратов, свернуть:
= c(√a + √c)/(√a)² - (√c)² =
= c(√a + √c)/(a - c);
г) k/(x + √k) * (x - √k)/(x - √k) =
в знаменателе развёрнутая разность квадратов, свернуть:
= k(x - √k)/(x² - (√k)²) =
= k(x - √k)/(x² - k);
д) 5/(√13 + √3) * (√13 - √3)/(√13 - √3) =
в знаменателе развёрнутая разность квадратов, свернуть:
= 5(√13 - √3)/(√13)² - (√3)² =
= 5(√13 - √3)/(13 - 3) =
= 5(√13 - √3)/10 =
= (√13 - √3)/2;
е) 6/(5 - 2√6) * (5 + 2√6)/(5 + 2√6) =
в знаменателе развёрнутая разность квадратов, свернуть:
= 6(5 + 2√6)/(5² - (2√6)²) =
= 6(5 + 2√6)/(25 - 4*6) =
= 6(5 + 2√6)/1 =
= 6(5 + 2√6).
1) y=3x^2-12x
0=3x^2-12x
3x^2-12x= 0
3x*(x-4)=0
x*(x-4) = 0
x=0
x-4=0
x=0
x=4
x1=0; x2=4
По графіку 1:
Корені (0;0) (4;0)
Область визначення x € R
Мінімум (2;-12)
Перетин з віссю ординат (0;0)
2) y=-2x³+5,2x
0=-2x³+5,2x
-2x³+5,2x= 0
-2x³+26/5x=0
-x*(2x²-26/5)=0
x*(2x²-26/5)=0
x=0
2x²-26/5=0
x=0
x=-√65/5
x=√65/5
x1=-√65/5; x2=0; x3=√65/5
x1≈-1,61245; x2=0; x3≈1,61245
По графіку 2:
Корені (-√65/5;0) (0;0)
(√65/5;0)
Область визначення x € R
Мінімум (-√195/15; -52√195/225
Максимум (√195/15; 52√195/225)
Перетин з віссю ординат (0;0)
3)y=-x²+6x-9
0=-x²+6x-9
0+x²-6x+9=0
(x-3)²=0
x-3=0
x=3
По графіку 3:
Корені (3;0)
Область визначення x € R
Максимум (3;0)
Перетин з віссю ординат (0;-9)
4)y=-x²-2,8x
0=-x²-2,8x
-x²-2,8x=0
-x²-14/5x=0
-x*(x+14/5)=0
x*(x+14/5)=0
x=0
x+14/5=0
x=0
x=-14/5
x1=-14/5 x2=0
x1=-2,8 x2=0
По графіку 4:
Корені (-14/5;0) (0;0)
Область визначення x € R
Максимум (-7/5; 49/25)
Перетин з віссю ординат (0;0)
2+5х+х+1 больше или равно х+3
2+5х+х+1-х-3 больше или =0
5х+0 больше или =0
х больше или равен 0
ответ [0;+ бесконечности )