1. Б
2. Г
3. В
4. 1) у(2) = 8 * 2 - 3 =13
2) -19 = 8x - 3
-19 + 3 = 8x
8x = -16
x = -2
3) -13 = 8 * (-2) - 3
-13 = -16 - 3
-13 ≠ -19
Графік не проходить через точку А
5. х>0 при х=(1 1/3; + ∞)
6. 6х² - 3х ≠ 0
3х(2х - 1) ≠ 0
х ≠ 0; 2х ≠ 1
х ≠ 0; х ≠1/2
D(y) = ( -∞; 0)∪(0; 1/2)∪(1/2; +∞)
7. y = 47x - 9 та y = -13x + 231
47x - 9 = -13x + 231
47x + 13x = 231 + 9
60x = 240
x = 4
y(4) = -13 * 4 +231 = 179
(4; 179)
8. Нехай невідома функція у = kx + b.
Якщо вона паралельна графіку у = -5х + 8 , то k = -5.
Тоді невідома функція у = -5х + b.
Оскільки графіку даної функції належить точка В(-2; 8), то
8 = -5 * (-2) + b
8 = 10 + b
b = 8 - 10
b = -2
Відповідь: у = -5х - 2
ответ:a<-1/12
Объяснение:
Рассмотрим функцию f(x)=sqrt(3a+x), тогда уравнение примет вид
f(f(x))=x
Поскольку функция f(x) монотонно возрастает, то исходное уравнение равносильно уравнению f(x)=x
sqrt(3a+x)=x, x>=0
3a+x=x^2
x^2-x-3a=0
D=1+12a
Найдем при каких а, получившееся квадратное уравнение имеет хотя бы один неотрицательный корень. Для этого достаточно чтобы больший корень был неотрицателен.
x=(1+sqrt(1+12a))/2>=0 <=> sqrt(1+12a)>=-1
Выходит, что если получившееся квадратное уравнение имеет хотя бы одно решение, то оно будет неотрицательно.
Значит, единственный случай, который нам подходит, это когда квадратное уравнение корней не имеет.
D=1+12a<0 <=> a<-1/12
(3^2)^10/3^17=3^20-17=3^3=27