Changes made to your input should not affect the solution:
(1): "c2" was replaced by "c^2". 2 more similar replacement(s).
7.1 Find the Least Common Multiple
The left denominator is : a-b
The right denominator is : b-c
Least Common Multiple:
(a-b) • (b-c)
7.2 Calculate multipliers for the two fractions
Denote the Least Common Multiple by L.C.M
Denote the Left Multiplier by Left_M
Denote the Right Multiplier by Right_M
Denote the Left Deniminator by L_Deno
Denote the Right Multiplier by R_Deno
Left_M = L.C.M / L_Deno = b-c
Right_M = L.C.M / R_Deno = a-b
7.3 Rewrite the two fractions into equivalent fractions
Two fractions are called equivalent if they have the same numeric value.
For example : 1/2 and 2/4 are equivalent, y/(y+1)2 and (y2+y)/(y+1)3 are equivalent as well.
To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.
7.4 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
8.1 Find the Least Common Multiple
The left denominator is : (a-b) • (b-c)
The right denominator is : c-a
Least Common Multiple:
(a-b) • (b-c) • (c-a)
8.2 Calculate multipliers for the two fractions
Denote the Least Common Multiple by L.C.M
Denote the Left Multiplier by Left_M
Denote the Right Multiplier by Right_M
Denote the Left Deniminator by L_Deno
Denote the Right Multiplier by R_Deno
Left_M = L.C.M / L_Deno = c-a
Right_M = L.C.M / R_Deno = (a-b)•(b-c)
8.3 Rewrite the two fractions into equivalent fractions
8.4 Adding up the two equivalent fractions
Processing ends successfully
2х - 5 = (х - 10) * 3
2х - 5 = 3х - 30
3х - 2х = - 5 + 30
х = 25 (кг) - было во втором ящике
2 * 25 = 50 (кг) - было в первом ящике
ответ: 50 кг в первом и 25 кг во втором.
Проверка: 25 - 10 = 15 кг - осталось во втором ящике
50 - 5 = 45 кг - осталось в первом ящике
45 : 15 = 3 (раз) - в три раза больше в первом ящике