М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
мишка2283
мишка2283
03.10.2022 05:06 •  Алгебра

На доске написали пять последовательных натуральных чисел, а потом одно число стёрли. оказалось, что сумма оставшихся четырех чисел равна 2015. найдите наименьшее из этих четырех чисел.

👇
Ответ:
Нezнaйка
Нezнaйка
03.10.2022
Если 2015 разделить на 4 части будет 503,75, соответственно ответ строится  из натуральных чисел вблизи данного числа, причем сумма последних цифр от этих чисел должна составлять 15,  это: 502,503,504 и 506 (505 стёрли). Наименьшее число - это 502.
4,6(39 оценок)
Открыть все ответы
Ответ:
Пакмен007
Пакмен007
03.10.2022

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

4,6(78 оценок)
Ответ:
katyabicheva
katyabicheva
03.10.2022

y = x^{2} + 3x + 4

Найдем уравнение касательной, проходящей через точку с абсциссой x_{0} = -2

Для этого найдем производную данной функции:

y' = (x^{2} + 3x + 4)' = 2x + 3

Найдем значение функции в точке с абсциссой x_{0} = -2:

y(-2) = (-2)^{2} + 3 \cdot (-2) + 4 = 4 - 6 + 4 = 2

Найдем значение производной данной функции в точке с абсциссой x_{0} = -2:

y'(-2) = 2 \cdot (-2)+ 3 = -4 + 3 = -1

Уравнение касательной имеет вид:

y = f'(x_{0})(x - x_{0}) + f(x_{0})

Подставим значение f'(x_{0}) = -1, \ f(x_{0}) = 2, \ x_{0} = -2

y = -(x + 2) + 2 = -x - 2 + 2 = -x

Итак, уравнение касательной заданной функции: y = -x

Воспользуемся геометрическим смыслом касательной: коэффициент наклона k касательной y = kx + b численно равен тангенсу угла наклона \text{tg} \ \alpha  с положительным направлением оси Ox

В найденной касательной коэффициент k = -1, следовательно, \text{tg} \ \alpha = -1 при \alpha = 135^{\circ} или \alpha = \dfrac{3\pi }{4}

ответ: \alpha = 135^{\circ} или \alpha = \dfrac{3\pi }{4}

4,8(85 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ