1. Касательная параллельна графику y = -2x + 1, k = -2 ⇒ f'(x₀) = -2
f(x) = x³ + 3x² - 2x -2
f'(x) = 3x² + 6x - 2
f'(x₀) = 3x₀² + 6x₀ - 2 = -2
3x₀² + 6x₀ - 2 = -2
3x₀² + 6x₀ = 0
x₀(3x₀ + 6) = 0
x₀ = 0 или x₀ = -2
y₁кас = kx + b
y₁кас = -2x + b
f(0) = -2. Подставим точку (0; -2) в уравнение касательной:
-2 = -2*0 + b
b = -2
y₁кас = -2x - 2
y₂кас = kx + b
y₂кас = -2x + b
f(-2) = 6. Подставим точку (-2; 6) в уравнение касательной:
6 = -2*(-2) + b
b = 2
y₂кас = -2x + 2
2. f(х) = х² - 2x - 1
f'(x) = 2x - 2
f'(x₀) = 2x₀ - 2 = k
f(x₀) = х₀² - 2x₀ - 1
Подставим точку (x₀; х₀² - 2x₀ - 1) в уравнение касательной y = (2x₀ - 2)x + b:
х₀² - 2x₀ - 1 = (2x₀ - 2)x₀ + b
х₀² - 2x₀ - 1 = 2x₀² - 2x₀ + b
b = -x₀² - 1
yкас = (2x₀ - 2)x - x₀² - 1. Этому графику принадлежит точка A(0; -5). Подставим её координаты в уравнение касательной:
-5 = (2x₀ - 2)*0 - x₀² - 1
-5 = - x₀² - 1
x₀² = 4
x₀ = -2 или x₀ = 2
yкас = (2x₀ - 2)x - x₀² - 1
y₁кас = (2*(-2) - 2)x - (-2)² - 1
y₁кас = (2*(-2) - 2)x - (-2)² - 1
y₁кас = -6x - 5
y₂кас = (2*2 - 2)x - 2² - 1
y₂кас = 2x - 5
Задача 10.
Это уравнение эллипса со смещённым центром. Координаты смещённого центра 0 (1; -3) - берём из верхних двух скобок.
Удобнее зап�сать (х - 1)² / 4² + (у + 3)² / 5² = 1
а= 4 (расстояние от смещённого центра до вершин эллипса по оси Х в обе стороны по 4)
b = 5 (расстояние от смещённого центра до вершин эллипса по оси У вверх и вниз по 5)
Сначала отметим на оси координат смещённый центр 0(1; -3)
От смещённого центра отметим на оси Х по 4 единицы влево и вправо, получим точку А1 (5; -3) и точку А2 (-3; -3)
От смещённого центра отметим по оси У по 5 единиц вверх и вниз, получим точку В1 (1; 2) и точку В2 (1; -8)
В1В2 - большая ось эллипса
А1А2 - малая ось эллипса
Так как в данном уравнении b больше а, эллипс будет вытянут вдоль оси У, по оси В1В2
Аккуратно по полученным точкам А1 А2 В1 В2 строим эллипс.
Найдём фокусы эллипса.
Так как b больше а, фокусы будут лежать на оси В1В2
Чтобы найти фокусы, нужно найти значение с
с² = b² - a² c² = 25 - 16 c² = 9 c = 3
Вычисляем фокусы: F1 (1; -3 +3) ⇒ F1 (1; 0)
F2 (1; -3-3) ⇒ F2 (1; -6)
Отмечаем фокусы на оси В1В2: от смещённого центра вверх и вниз по оси У по 3 единицы, или можно по их координатам.
Оси Х и У имеются ввиду в новой системе координат, где центр находится в точке 0 (1; -3)
x = 0 ÷ 0,7
x = 0
- 1,5x = 6
x = 6 ÷ ( - 1,5)
x = - 4
42x = 13
x = 13/42