1. Распеши косинус двойного угла (косинус в квадрате х минус синус в квадрате х).
2. Через основное тригонометрическое тождество вырази синус через косинус.
3. Упрости вырожение, приведи подобные, заменив косинус х на а, должно плучиться квадратное уравнение (6а(в квадрате)-5а-4=0).
4. Решаем уравнение, получаем два корня один из которых не удовлетворяет условие косинус может быть только от -1 до 1.
5. Подставляешь полученный корень. Получаеться косинус х равно и корень.
6. Дальше решаешь через аркосинус и все решение.
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
1) Пусть Х и Y - стороны прямоугольника. Тогда
X + Y = 13
X * Y = 42
Y = 13 - X, поэтому получаем квадратное уравнение
Х * (13 - Х) = 42 или Х² - 13 * Х + 42 = 0
Х₁ = 6 Х₂ = 7
2) X * Y = 187 X² + 2 * X * Y + Y² = 784 (X + Y)² = 28² X + Y = 28
X² + Y² = 410 X² - 2 * X * Y + Y² = 36 (X - Y)² = 6² X - Y = 6
Итак, данные числа 17 и 11.