Пусть первое число, пропорциональное числу 1 равно х, тогда второе число, пропорциональное числу 2 равно 2х. Т.к. сумма трёх чисел равна 18,то третье число равно 18-х-2х=18-3х По условию, произведение этих трёх чисел должно принимать наибольшее значение. Применим производную для решения задачи: f(x)=x*2x*(18-3x)=2x²(18-3x)=36x²-6x³ f `(x)=(36x²-6x³)`=36*2x-6*3x²=72x-18x²=18x(4-x) f `(x)=0 при 18x(4-x)=0 - + - 04 min max ↓ ↑ ↓ x=4 2x=2*4=8 18-4-8=6
(2x – 5)(2x + 5) – ( 2x + 3)2 ≤ 2
4x^2-25-4x^2-12x-9≤2
-12x ≤ 2+25+9
-12x<=36
x>=-3
xe[3, +oo)