Пусть катеты a и bа/b=3/4a=3b/4пусть меньший отрезок, на которые делит высота гипотенузу равен x тогда второая x+14по теореме высота h^2=x(x+14)по теореме пифагора a^2=x^2+h^2=x^2+x(x+14)=2x^2+14xснова по теореме пифагора: b^2=h^2+(x+14)^2=x(x+14)+(x+14)^2=x^2+14x+x^2+28x+196=2x^2+42x+196но так как мы сказали что a=3b/4 => a^2=9b^2/16=9(2x^2+42x+196)/169(2x^2+42x+196)/16=2x^2+14x9(2x^2+42x+196)=32x^2+224x18x^2+378x+1764=32x^2+224x-14x^2+154x+1764=014x^2-154x-1764=0x^2-11x-126=0x=18 осталось найти a и b и найти площадь
Возьмём всю работу = 1 1 экскаватор , работая один, выполнит всю работу за (х + 10) дней 2 экскаватор, работая один, выполнит всю работу за х дней в день 1 экскаватор делает 1/(х + 10) всей работы в день 2 экскаватор делает 1/х всей работы в день оба , работая вместе , делают 1/12 всей работы 1/(х + 10) + 1/ х = 1/12 |· 12х(х + 10) 12 х + 12( х + 10) = х(х + 10) 12 х + 12х +120 = х² + 10 х х²- 14 х - 120 = 0 по т. виета х1 = 20 и х2 = 6
{ x + y = xy
Возведем в квадрат 2 уравнение
{ x^2 + y^2 = 4xy
{ x^2 + 2xy + y^2 = x^2y^2
Отсюда
{ x^2 + y^2 = 4xy
{ x^2 + y^2 = x^2y^2 - 2xy
Левые части уравнений одинаковые, значит и правые тоже равны.
4xy = x^2y^2 - 2xy
x^2y^2 - 6xy = 0
xy*(xy - 6) = 0
1) x = 0, тогда y = 0
2) y = 0, тогда x = 0
3) xy = 6, тогда
{ x^2 + y^2 = 24
{ x + y = 6
x^2 + (6 - x)^2 = 24
x^2 + x^2 - 12x + 36 = 24
2x^2 - 12x + 12 = 0
x^2 - 6x + 6 = 0
D/4 = 3^2 - 6*1 = 9 - 6 = 3
x1 = 3 - √3; y1 = 6 - x = 3 + √3
x2 = 3 + √3; y2 = 6 - x = 3 - √3
ответ: (0, 0), (3 - √3, 3 + √3), (3 + √3, 3 - √3)