Объяснение:Найти производную следующих функций:
1) у = 4х^4 + 3х; y'= (4x⁴+3x)'= 16x³+3
2) у = 12х^2 - х – 2; y'= (12x²-x-2)' =24x - 1
3) у = -4х^9 - 8х^4 – 6х + 22; y' = (-4x⁹-8x⁴-6x+22)= - 36x⁸-32x³-6
4) у= 8х^7 - 14х^5 + 5х - 10; y' =(8x⁷-14x⁵+5x-10)'= 56x⁶-70x⁴+5
5) у = 6х^3 + (1/9)х^3 + 9х; y'= 18x²+(1/3)x²+9
6) у = 19х^4 + 3х^8 – 22. y'=76x³+24x⁷
«Производная степенной, логарифмической и показательной функций»
Найти производную следующих функций:
1. у = (х - 2)^8 y' = 8(x-2)⁷(x-2)'=8(x-2)⁷
2. у = (х2 + 2х)^3 y'= 3(x²+2x)²(x²+2x)'= 3(x²+2x)(x+2)=3x(x+2)²= 3x(x²+4x+4)=3x³+12x²+12x
3. у = (х +3)^4 y'=4(x+3)³(x+3)'= 4(x+3)³ =4( x³+9x²+27x+27)
4. у = 41^х y' = 41ˣ ln41
5. у = (3 + 5х + х3)^2 y' = 2( x³+5x+3)( x³+5x+3)'= 2( x³+5x+3)(2x+5)
В решении.
Объяснение:
Решить данные неравенства : (x+4)^2<0 x^2+4<0 x^2+3x<0;
1) (x + 4)² < 0
х² + 8х + 16 < 0
Приравнять к нулю и решить квадратное уравнение:
х² + 8х + 16 = 0
D=b²-4ac = 64 - 64 = 0 √D=0
х=(-b±√D)/2a
х=(-8±0)/2
х = -4.
Уравнение квадратичной функции, график - парабола. Значение х = -4 указывает на то, что парабола "стоит" на оси Ох в точке х= -4, весь график выше оси Ох, значит, у < 0 не существует.
Неравенство не имеет решения.
2) x² + 4 < 0
Приравнять к нулю и решить квадратное уравнение:
x² = -4
Уравнение не имеет действительных корней.
Неравенство не имеет решения.
3) x² + 3x < 0
Приравнять к нулю и решить неполное квадратное уравнение:
x² + 3x = 0
х(х + 3) = 0
х₁ = 0;
х + 3 = 0
х₂ = -3;
Уравнение квадратичной функции, график парабола, ветви направлены вверх, пересекают ось Ох в точках х= 0 и х= -3.
На промежутке от х= -3 до х=0 у<0 (парабола ниже оси Ох).
Решения неравенства: х∈(-3; 0).
Неравенство строгое, скобки круглые.
a) 2213
2212
b) 10005
10004
c) 2334
2333
d) 10012
10011