Воспользуемся формулой "сумма синусов равна удвоенному произведению синуса полусуммы на косинус полуразности":
2sin ((x+y)/2)cos ((x-y)/2)= - √2;
из первого уравнения ⇒sin((x+y)/2)=sin (π/2)=1, поэтому второе уравнение превращается в
sin((x-y)/2)=-√2/2; (x-y)/2=-π/4+2πn или (x-y)/2=-3π/4+2πk; x-y=-π/2+4πn или x-y=-3π/2+4πk. Чтобы получить ответ, сложим первое уравнение с получившимися и результат разделим на 2 (найдем x), а затем вычтем из первого получившиеся и результат разделим на 2 (найдем y).
x=π/4+2πn или x=-π/4+2πk; y=3π/4-2πn или y= 5π/4-2πk
ответ: (π/4+2πn; 3π/4-2πn); (-π/4+2πk; 5π/4-2πk); n, k∈Z
Решение Пусть х км/ч - скорость второго пешехода. Тогда скорость первого - (х+1) км/ч. Так как встретились пешеходы в 9 км от пункта А, путь первого составил 9 км, а путь второго - 10 км. Значит, второй пешеход провел в пути (10/х) часов, а первый (9/(х+1)+0,5) часов, полчаса из которых потратил на остановку. Составим равнение: 10/x = 9/(x + 1) + 1/2 10/x = (18 + x + 1)/([2*(x + 1)] 20x + 20 = 18x + x² + x x² – x – 20 = 0 x₁ = - 4 не удовлетворяет условию задачи x₂ = 5 5 (км/ч) - скорость второго пешехода 1) 5 + 1 = 6 (км/ч) - скорость первого пешехода ответ: 6 км/ч ; 5 км/ч.