 
                                                 
                                                1. x2 - 9x + 20 = 0
По теореме Виетта
x1 + x2 = 9
x1 × x2 = 20
(То есть нам нужно найти 2 таких числа, при сложении которых получилось бы 9, а при умножении 20)
х1 = 4
х2 = 5
2. х2 - 6х + 8
а) (a - b)2
x2 - 2x × 3 + 8
x2 - 2x × 3 + 9 - 9 + 8
x2 - 2x × 3 + 9 - 9 + 8 = (x - 3)2 - 1
б) представим выражение в виде
х2 - 2х - 4х + 8 (для того, чтобы мы могли потом использовать группировки). теперь вынесем общий множитель у пар
х(х - 2) - 4(х - 2)
теперь снова вынесем общий множитель (в данном случае это целая скобка)
(х - 2)(х - 4)
 
                                                1. нет; 2. 1) общего вида 2) общего вида 3) общего вида 3. 1) -1; 3 2) 1; -3 4) -1
Объяснение:
1. Если функция нечетная то произведение f(3)f(-3) не будет положительным.
2.
1)


Это функция общего вида
2)


Это функция общего вида
3)


Это функция общего вида
3.
1)

Значит
![min_{[2;4]}f(x)=min_{[-4;-2]}f(x)=-1\\max_{[2;4]}f(x)=max_{[-4;-2]}f(x)=3](/tpl/images/3904/3705/69e2d.png)
2)

Значит
![min_{[2;4]}f(x)=-min_{[-4;-2]}f(x)=1\\max_{[2;4]}f(x)=-max_{[-4;-2]}f(x)=-3](/tpl/images/3904/3705/5cc0f.png)
4.

Это биквадратное уравнение. Делаем подстановку

Уравнение будет иметь один корень, когда дискриминант равен 0
Но, поскольку х=±√у, то при любом положительном у мы получим два различных значения х. Одно значение х мы получим лишь в случае у=0. Тогда х=√0=0. Следовательно

Делаем проверку:
1) а=-1

Имеется одно решение (т.к выражение в скобках никогда не будет равно 0)
2) а=3

Здесь появляется второй корень. Значит, это значение не подходит.
Окончательно получаем решение: а=-1
 
                                                 
                                                 
                                                 
                                                