Из первого равенства очевидным образом следуют неравенства Отсюда легко убедиться в справедливости неравенства под номером 2. Для этого достаточно обе части неравенства возвести в квадрат, получив, , что и требовалось проверить.
Первое неравенство можно проверить, например, следующим образом. Представим первое равенство следующим образом: Поскольку x > 0, y > 0, то 2xy > 0, а 1 + 2xy > 1. Значит, и Поскольку x + y > 0, то из последнего неравенства следует неравенство x + y > 1, что и требовалось доказать.
Последние два неравенства неверные. Сначала заметим, что из неравенства , следует, что 0 <x < 1, 0 < y < 1 Можно доказать, что куб таких чисел меньше квадрата, в третьем же неравенстве наоборот всё. Аналогично, куб числа от 0 до единицы всегда меньше самого числа. Эти утверждения очевидны. Поэтому неравенства 3 и 4 неверны. Выбрать какой-то один вариант тут не получится.
Из первого равенства очевидным образом следуют неравенства Отсюда легко убедиться в справедливости неравенства под номером 2. Для этого достаточно обе части неравенства возвести в квадрат, получив, , что и требовалось проверить.
Первое неравенство можно проверить, например, следующим образом. Представим первое равенство следующим образом: Поскольку x > 0, y > 0, то 2xy > 0, а 1 + 2xy > 1. Значит, и Поскольку x + y > 0, то из последнего неравенства следует неравенство x + y > 1, что и требовалось доказать.
Последние два неравенства неверные. Сначала заметим, что из неравенства , следует, что 0 <x < 1, 0 < y < 1 Можно доказать, что куб таких чисел меньше квадрата, в третьем же неравенстве наоборот всё. Аналогично, куб числа от 0 до единицы всегда меньше самого числа. Эти утверждения очевидны. Поэтому неравенства 3 и 4 неверны. Выбрать какой-то один вариант тут не получится.
1) (3a+1)(9a²-3a+1)=(3а)³+b³=(3*1/3)³+1=2
2) 3⁹-4³=(3³)³-4³=(3³-4)(3⁶+3³4+4²)=23*(3⁶+3³4+4²) делится на 23, т. к сомножитель кратен 23
3) a⁴-1=(a²-1)(a²+1)=(a²+1)(а-1)(а+1)