№1.
Если трехчлен (2х²- 7х+а) содержит множитель ( х - 4), значит один из корней уравнения 2х²- 7х+а= 0 равен 4, т.е. х=4
Подставим х=4 в уравнение 2х²- 7х+а=0 и найдем а.
2·4²- 7·4+а =0
а=28-32
а= - 4
№2.
4х²+ ах + 6 содержит множитель ( 2х + 1)
1)2х+1=0
х= - 0,5 - это первый корень уравнения 4х²+ах+6=0
2) Делим обе части уравнения 4х²+ах+6=0 на 4 и получим приведенное квадратное уравнение:
х²+0,25ах+1,5=0
3) По теореме Виета для приведенного квадратного уравнения найдем второй корень,
х₁ * х₂ = 1,5
х₂=1,5 : (-0,5)
х₂= - 3
4) По теореме Виета для приведенного квадратного уравнения найдем второй коэффициент, стоящий при х.
х₁+х₂= -0,25а
- 0,25а = - 0,5 + (-3)
- 0,25а = - 3,5
а = - 3,5 : (-0,25)
а = 14
Это арифметическая прогрессия.
a1 = 1; d = 1; любое a(n) = n.
Нужно найти такое n, что S(n) <= 235; S(n+1) > 235.
{ S(n) = (a1 + a(n))*n/2 = (1 + n)*n/2 <= 235
{ S(n+1) = (a1 + a(n+1))*(n+1)/2 = (1 + n + 1)(n + 1)/2 > 235
Получаем
{ (n + 1)*n <= 470
{ (n + 2)(n + 1) > 470
Раскрываем скобки
{ n^2 + n - 470 <= 0
{ n^2 + 3n - 468 > 0
Решаем квадратные неравенства
{ D = 1 + 4*470 = 1881 ≈ 43,4^2
{ D = 9 + 4*468 = 1881 ≈ 43,4^2
Как ни странно, дискриминанта получились одинаковые.
{ n = (-1 + 43,4)/2 <= 21
{ n = (-3 + 43,4)/2 > 20
ответ 21.