1)Найдите девятый член последовательности
2) Найдите пятый член последовательности заданной рекуррентным у1 = ½, yₙ=2*y₍ₙ₋₁₎
y₂=2*1/2=1; y₃=2*1=2; y₄=2*2=4; y₅=2*4=8
3) Подберите формулу n- го члена последовательности - 2/2; 4/5; - 6/8; 8/11; -10/14;
проверка:
4) Сколько членов последовательности 3, 6, 9, 12,….меньше числа 95
аₙ=а₁+3(n-1)
aₙ<95
a₁+3(n-1)<95
3+3n-3<95
3n<95
n<31.(6)
n=31
проверим: a₃₁=3+3(31-1)=3+3*30=93
Значит 31 член меньше 95
5) у₁ = 2, у₂ = 1, уₙ = 2y₍ₙ₋₂₎+3y₍ₙ₋₁₎ (n = 3,4,5,…).Найдите n, если известно, что уₙ = 83.
тут можно просто решить находя слены этой последовательности
y₁=2
y₂=1
y₃=2*2+3*1=4+3=7
y₄=2*1+3*7=2+21=23
y₅=2*7+3*23=14+69=83
N=5
Объяснение:
Для того, чтобы число составленное из цифр 0, 2, 4, 7, 8 было нечетным, то последнее цифра должна быть 7 так как по признаку делимости числа на 2, то число делится на два если его последняя цифра делится на 2, а так как 0, 2, 4, 8 делится на 2, а 7 - не делится, то последняя цифра числа 7.
На оставшиеся места претендуют комбинации из цифр: 0, 2, 4, 8
Нужно выбрать 2 числа из 4 цифр, так как по условие число трехзначное. Число размещений:
Выбрать 1 элемент из трех возможно , так как ноль не может стоять на первом месте. Пусть всего составить различные нечетные трехзначных числа без повторений цифр, тогда
.
2*3a - 3(2a-1) + 21 = 0
6a - 6a + 3 + 21 = 0
24 ≠ 0
Ни при каком а