Объяснение:
1. Преобразуйте в многочлен:
1) (a + 4)²=a²+8a+16 2) (3у - с)²=9y²-6cy+c²
3) (2a - 5)( 2a + 5) =4a²-25 4) (x² + y)( x² - y)=x^4-y²
2. Разложите на множители:
1) 0,36 – с²=(0,6-c)(0,6+c) 2) 5a² + 10a=5a(a+2)
3) 16x² – 49=(4x)²-7²=(4x-7)(4x+7)
3) Упростите выражение: (m - 1)(т + 1) - (т - 3)=mt-2t+m+2
4. Выполните действия:
a) 3(1 + 2xy)( 1 - 2xy) =3(1-4x²y²)=3-12x²y² б) (x²-y)=(x-√y)(a+√y)
5. Решите уравнение: (x - 2)(x + 2) - x(x + 5) = - 8
X²-4-x²-5x=-8
-5x=-4
X=4/5=0,8
-3.5, -2, 0.5, 2
Объяснение:
умножим обе части на 2 и перенесем (6-x) в левую часть - получим
2x² + 2x-6 +x = 2√(2x²+3x+2)
(2x²+3x+2) - 8 = 2√(2x²+3x+2) - у нас слева в скобке и под корнем теперь одинаковое выражение
обозначим √(2x²+3x+2) = y
y² - 8 = 2y
y²-2y-8 = 0
D = 36
y₁ ₂ = (2±6)/2
y₁ = -2
y₂ = 4
√(2x²+3x+2) = -2 возведем в квадрат обе части
2x²+3x+2 = 4
2x²+3x-2 = 0
D = 9+4*2*2 = 25
x₁ ₂ = (-3±5)/4, x₁ = -2, x₂ = 0.5
√(2x²+3x+2) = 4, аналогично в квадрат
2x²+3x+2 = 16
2x²+3x-14 = 0
D = 11²
x ₃ ₄ = (-3 ±11)/4, x₃ = -3.5, x₄ = 2
Далее проверяем подстановкой - под корнем должно быть неотрицательное - оно так и есть, кстати