Здесь и далее фраза "не нарушая общности" будет означать, что мы можем так перетасовать вертикали и горизонтали, чтобы нужные нам линии имели нужные обозначения.
Пусть на некоторой вертикали (не нарушая общности - на вертикали А) находится 0<k<8 рыцарей (не нарушая общности - на полях с А1 по Аk). Рассмотрим лжеца на поле А8. Поскольку он утверждает, что на его горизонтали больше лжецов, чем на его вертикали, на самом деле это не так. Следовательно, на восьмой горизонтали как минимум k рыцарей (не нарушая общности - на полях с B8 по чётотам-8). Рассмотрим пересечения их вертикалей с первой горизонталью. Если бы на всех этих пересечениях стояли рыцари, то на первой вертикали оказалось бы минимум k+1 рыцарей, и рыцарь на А1 солгал бы. Значит, на каком-то из них (не нарушая общности - на В1) стоит лжец. При этом на вертикали В , согласно утверждению рыцаря с В8, более k рыцарей. Значит, следуя утверждению лжеца с B1, на горизонтали 1 также более k рыцарей. Получается, рыцарь с А1 лжёт. Противоречие.
Парадокс разрешим лишь в том случае, когда на каждой вертикали стоят либо 8 рыцарей, либо 8 лжецов. Из этого, в частности, следует доказываемое утверждение
Объяснение:
Не знаю правильно ли
Неопределенные системы линейных уравнений - метод решения, пример посвящено вопросу о том, как решать неопределенные системы. Если рассматривать систему, состоящую из n уравнений с n неизвестными, т.е. системы, матрица коэффициентов которых - квадрат, то необходимым условием её решения методом Крамера или матричным методом является неравенство нулю её определителя. Т.е. если определитель матрицы равен нулю, то решить такую систему указанными методами нельзя. Но это совсем не означает, что эта система уравнений не имеет решения вообще. В этом случае возможны два варианта. Первый из них, это когда решений действительно нет, т.е. система несовместна. Во втором случае система имеет множество решений (неопределенная система). Именно для решения таких систем и предназначен метод, который будет рассмотрен в данном видео уроке. Здесь также будет решен пример, в котором требуется решить неопределенную систему линейных уравнений. Процесс решения системы сопровождается подробным объяснением. Видео урок «Неопределенные системы линейных уравнений - метод решения, пример» вы можете смотреть онлайн в любое время абсолютно бесплатно. Успехов!
Объяснение:
7 = - (-4) + 3
7 = 4 + 3
7 = 7
Да, пренадлежит.