М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Masha36127
Masha36127
12.08.2021 01:00 •  Алгебра

Задайте формулой линейную функцию , график которой параллелен прямой y=2х-5 и проходит через начало координат. пишите просто решение без всяких слов,

👇
Ответ:
Amalik0
Amalik0
12.08.2021
Условие параллельности прямых-это к₁=к₂, в нашем случае к₁=2 (это коэффициент, который стоит перед х), а чтобы проходило через начало координат С=о, тогда уравнение прямой имеет вид у=2х+0,  
у=2х - искомое уравнение
4,7(52 оценок)
Открыть все ответы
Ответ:
Oхxxymiron
Oхxxymiron
12.08.2021

Подготовка к ЕГЭ

Задать во Войти

АнонимМатематика23 марта 22:16

найдите сумму корней квадратного уравнения х^2-6x+2=0

ответ или решение1

Михайлов Вячеслав

1. Вспомним формулу дискриминанта:

Дискриминант D квадратного трёхчлена a * x2 + b * x + c равен b2 - 4 * a* c.

Корни квадратного уравнения зависят от знака дискриминанта (D):

D > 0 - уравнение имеет 2 различных вещественных корня (х1 = (-b +√D) / (2 * а)), х2 = (-b -√D) / (2 * а));

D = 0 - уравнение имеет 1 корень (х = (-b +√D) / (2 * а));

D < 0 - уравнение не имеет вещественных корней.

2. Найдём дискриминант заданного уравнения:

D = 36 - 4 * 1 *2;

D = 36 - 8;

D = 28.

3. Дискриминант больше 0, значит уравнение имеет два корня:

х1 = (6 +√28) / (2 * 1);

х1 = (6 + 2√7) / 2;

х1 = 3 + √7;

х2 = (6 - √28) / (2 * 1);

х2 = (6 - 2√7) / 2;

х2 = 3 - √7;

4. Найдём сумму корней уравнения:

х1 + х2 = 3 +√7 + 3 -√7 = 6.

ответ: Сумма корней квадратного уравнения равна 6.бъяснение:

4,6(23 оценок)
Ответ:
Kuanova2005
Kuanova2005
12.08.2021
Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k y=kx+m : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором y=4- \frac{1}{3}x; k=- \frac{1}{3}. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения x_1; x_2, два произвольных числа, но x_1\ \textless \ x_2 . Пусть мы имеем функцию y=f(x), тогда вычисляем значения функции в этих двух точках, имеем f(x_1) и f(x_2), так вот, если x_1\ \textless \ x_2; f(x_1)\ \textless \ f(x_2);, тогда функция возрастающая, если же x_1\ \textless \ x_2; f(x_1)\ \textgreater \ f(x_2), то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)y=x^3+1; x_1=-2; f(x_1)=(-2)^3+1=-7; x_2=4;x_1\ \textless \ x_2 \\ f(x_2)=4^3+1=65; f(x_1)\ \textless \ f(x_2), т.е. функция возрастающая. А вот задание с y= \frac{x^2}{2} не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) y= \frac{x^2}{2}; y'= \frac{2x}{2}=x;. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): x_1=1; x_2=2; x_1\ \textless \ x_2; f(x_1)= \frac{1}{2};f(x_2)=2; f(x_1)\ \textless \ f(x_2), функция возрастает, что и требовалось доказать.
4,5(65 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ