Т.к. а- натуральное число, то а=0 мы рассматривать не будем. Представим,что у нас неполное квадратное уравнение: 1) пусть a^2-25=0 ( нет свободного члена). a1=-5; a2=5 тогда уравнение будет выглядеть так: x^2-(2a-4)x=0 x(x-2a+4)=0 - как видим, уравнение имеет два корня a=-5 - не удовлетворяет условию, т.к. не является натуральным числом.
2) пусть теперь средний коэффициент равен нулю 2a-4=0; a=2 Уравнение примет вид: x^2+2^2-25=0 x^2=21 - два корня
3) Рассмотрим теперь полное квадратное уравнение с обязательным условием,что D>=0. D=(2a-4)^2-4(a^2-25)=4a^2-16a+16-4a^2+100=-16a+116>=0; -16a>=-116; a<=7,25 Т.к. а - натуральное число, то а =1,2,3,4,5,6,7.
1. y=14x-61 y= -16x+29 14x-61=-16x+29 30x=90 x=3 y=14*3-61 => y=-19 y=-16*3+29 =>y=-19 (3;-19) 2. y=-12x+7 || y=-12x+-b y=-1.83x+12 || y=-1.83x+-b b - отвеает за сдвиг графика вдоль оси 0У, если k(f₁)=k(f₂) - графики аврвллельны и значение b может быть любым b∈(-∞,+∞) 3. y=4х+2 || y=4x+-b (объяснение - выше) график y=-8x+9 пересекается с осью 0У в точке у=9; значит: функция у=4х+9 (k=4, k>0) параллельная у=4х+2 и пересекается с у=-8х+9 (k=-8, k<0) в точке, принадлежащей оси координат: y=9 -8x+9=4x+9 -8x-4x=9-9 -12x=0 x=0 точка пересечения (0;9) Для задания №3 прилагаю график для наглядности
(1/2)log₄[(1/2)×(1/2)]=(1/2)log₄(1/4)=-(1/2)log₄4=-1/2