Объяснение:Найти производную следующих функций:
1) у = 4х^4 + 3х; y'= (4x⁴+3x)'= 16x³+3
2) у = 12х^2 - х – 2; y'= (12x²-x-2)' =24x - 1
3) у = -4х^9 - 8х^4 – 6х + 22; y' = (-4x⁹-8x⁴-6x+22)= - 36x⁸-32x³-6
4) у= 8х^7 - 14х^5 + 5х - 10; y' =(8x⁷-14x⁵+5x-10)'= 56x⁶-70x⁴+5
5) у = 6х^3 + (1/9)х^3 + 9х; y'= 18x²+(1/3)x²+9
6) у = 19х^4 + 3х^8 – 22. y'=76x³+24x⁷
«Производная степенной, логарифмической и показательной функций»
Найти производную следующих функций:
1. у = (х - 2)^8 y' = 8(x-2)⁷(x-2)'=8(x-2)⁷
2. у = (х2 + 2х)^3 y'= 3(x²+2x)²(x²+2x)'= 3(x²+2x)(x+2)=3x(x+2)²= 3x(x²+4x+4)=3x³+12x²+12x
3. у = (х +3)^4 y'=4(x+3)³(x+3)'= 4(x+3)³ =4( x³+9x²+27x+27)
4. у = 41^х y' = 41ˣ ln41
5. у = (3 + 5х + х3)^2 y' = 2( x³+5x+3)( x³+5x+3)'= 2( x³+5x+3)(2x+5)
1+sinx·√(2ctgx) ≤ 0
Подкоренное выражение не может быть отрицательным
ctg x ≥ 0 0.5π ≥ x > 0 это в 1-й четверти
1.5π ≥ x > π это в 3-й четверти
в 1-й четверти sinx > 0 и выражение 1+sinx·√(2ctgx)> 0
в 3-й четверти sinx < 0 и выражение 1+sinx·√(2ctgx)может стать меньше 0, если
sinx·√(2ctgx) ≤ -1
делим на отрицательный синус
√(2ctgx) ≥ -1/sinx
обе части положительны
возводим в квадрат
2ctgx ≥ 1/sin²x
2ctgx ≥ 1 + ctg²x
1 + ctg²x - 2ctgx ≤ 0
(1 - ctgx)² ≤ 0
Квадрат любого числа не может быть отрицательным, поэтому остаётся только
равенство нулю:
1 - ctgx = 0
ctgx = 1 (четверть 3-я!)
х = 5/4π
Решение единственное: при х = 5/4π выражение 1+sinx·√(2ctgx) = 0
ну, и, разумеется следует добавить 2πn, тогда решение такое:
х = 5/4π +2πn
0,75 * ( 4X + 8 ) = 9 - 7X + 1
3X + 6 = 10 - 7X
3X + 7X = 10 - 6
10X = 4
X = 4 : 10
X = 0,4