(d-z)^2 это квадрат разности представленный в виде произведения
1)S=x·y
P=2·(x+y)
2·(x+y)=60
x+y=30
(х+10) - сторона увеличивается на 10,
(y-6) - другая сторона уменьшается на 6
s=(x+10)·(y-6)
По условию s уменьшается на 32 по сравнению с S
Составляем уравнение:
x·y- (x+10)·(y-6)=32
x·y- (x·y+10y-6x-60)=32
x·y- x·y-10y+6x+60=32
28=10y-6x
Система
{x+y=30
{28=10y-6x
{y=30-x
{28=10·(30-x)-6x
16x=272
x=17
y=30-x=13
О т в е т. 13 и 17
Объяснение:
2)x-ол алғашқы жылдамдық болсын 20мин ол 1/3 сағ
10/x-10/(x+1)=1/3
3(10(x+1)-10x)=x(x+1)
30=x^2+x
x^2+x-30= 0
D=1+4*30=11^2
x=-1+11/2=5
x2=-1-11/2=-6
жауабы 5км/сағ
Объяснение:
В основе метода математической индукции (ММИ) лежит принцип математической индукции: утверждение $P(n)$ (где $n$ - натуральное число) справедливо при $\forall n \in N$, если:
Утверждение $P(n)$ справедливо при $n=1$.
Для $\forall k \in N$ из справедливости $P(k)$ следует справедливость $P(k+1)$.
Доказательство с метода математической индукции проводится в два этапа:
База индукции (базис индукции). Проверяется истинность утверждения при $n=1$ (или любом другом подходящем значении $n$)
Индуктивный переход (шаг индукции). Считая, что справедливо утверждение $P(k)$ при $n=k$, проверяется истинность утверждения $P(k+1)$ при $n=k+1$.
Метод математической индукции применяется в разных типах задач:
Доказательство делимости и кратности
Доказательство равенств и тождеств
Задачи с последовательностями
Доказательство неравенств
Нахождение суммы и произведения
= d²+z² это правильно