М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Евгения22042002
Евгения22042002
03.06.2020 16:10 •  Алгебра

Представить в виде квадрата одночлена 16a4 . 169x6. 0,04b12. (дробь) 9/4m6 .

👇
Ответ:
Куска
Куска
03.06.2020
Решение
1)  16a⁴ = (4a²)²
2)  169x⁶ = (13x³)¹
3)  0,04b¹² = (0,2b⁶)²
4)  9/4m⁶ = (3/2m³)²
4,5(41 оценок)
Открыть все ответы
Ответ:
Данное выражение должно делиться на 10^7 = 2^7 * 5^7, то есть кратным 2^7 и 5^7
a должно быть чётным
Пусть а=2n
a(a+8)(a+16)(a+24)(a+32)=2n(2n+8)(2n+16)(2n+24)(2n+32)=
=2^5(n+4)(n+8)(n+12)(n+16)  >  не кратно 2^7, a=2n не подходит.
Пусть а=4n
4n(4n+8)(4n+16)(4n+24)(4n+32) = 2^10 *(n+2)(n+4)(n+6)(n+8) - кратно 2^7

произведение (n+2)(n+4)(n+6)(n+8)  должно быть кратно  5^7,   все сомножители дают разные остатки от деления на 5, поэтому  среди них только один должен делиться на 5^7.
наименьшее n - в  множителе (n+8) ---> n=5^7 -8=78125-8=78117

a=4*78117=312468
4,6(89 оценок)
Ответ:
masha6610
masha6610
03.06.2020

ответ:x = \pm \frac{7 \pi n}{3}, n \in \mathbb{Z}

Объяснение:

Уравнения вида, которое вы нам предоставили — очень часто вызывает различные затруднение у учеников и студентов тоже. Но это, на самом деле, не так страшно и не так сложно, как может показаться на первый взгляд. Прежде, чем разобраться с Вашей уравнением cos x = 1/2, нужно подумать, в каком виде можно представить данное уравнение, чтоб понять как его решать.

Вот так будет выглядеть Ваше условие на математическом языке:  

   \[cos x = \frac{1}{2}\]

Да, я понимаю, что это Вам особо не так как вид особо не изменился. Но чтоб решать такие уравнения, то надо использовать известное правило, которое выглядит таким образом:  

   \[cos x = a\]

 

   \[x = \pm arccos \mathbf{a} + 2\pi n, n \in \mathbb{Z}\]

Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения:  

   \[cos x = \frac{1}{2}\\]

 

   \[x = \pm arccos \frac{1}{2} + 2\pi n, n \in \mathbb{Z}\]

Значение arccos \frac{1}{2} мы найдём при таблицы. И исходя из этого получаем, что arccos \frac{1}{2} = \frac{\pi}{3}

Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение:  

   \[cos x = \frac{1}{2}\]

 

   \[x = \pm \frac{\pi}{3} + 2\pi n, n \in \mathbb{Z}\]

А уже, учитывая всё выше написанное, приведём решение нашего уравнения к нормальному виду и получим такое:  

   \[x = \pm \frac{7 \pi n}{3}, n \in \mathbb{Z}\]

ответ: x = \pm \frac{7 \pi n}{3}, n \in \mathbb{Z}

4,8(18 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ