13 деталей
Объяснение:
Пусть второй рабочий делает за 1 час х деталей, тогда первый рабочий делает за 1 час х+3 деталей.
260 деталей второй рабочий делает за 260/x часов, а первый рабочий за 260/(x+3) часов. Так как первый рабочий работает на 6 часов быстрее, то разница времени равна 6 и получаем следующее уравнение:
260/x – 260/(x+3) = 6.
Отсюда получаем квадратное уравнение:
260•(x+3)–260•x=6•x•(x+3)
260•x+780–260•x=6•x²+18•x
6•x²+18•x–780=0 |:6
x²+3•x–130=0
D=3²–4•1•(–130)=9+520=529=23²
x₁=(–3–23)/2= –13<0 – не подходит,
x₂=(–3+23)/2= 10>0 – подходит.
Значит, второй рабочий делает 10 деталей за 1 час, тогда первый рабочий делает 10+3 = 13 деталей за 1 час.
Подставим вместо а.
(a×a=b×b=c×c = 0)
Свойство: при перестановки b×c знак меняется на противоположный -c×b(-b-c)×b = -b×b - c× b = -c×b=b×c
Доказали что a×b=b×c
Аналогично докажем что a×b=c×a и b×c=c×a
Из уравнения выразим переменную b : b=-a-c
b×c = (-a-c)×c = -a×c - c×c = -a×c = c×a - ДОКАЗАЛИ
Из уравнения выразим переменную b: b=-a-c
a×b =a× (-a-c)=a×(-a) - a×c = -a×c = c×a - ДОКАЗАЛИ