М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
вика3844
вика3844
08.02.2021 10:30 •  Алгебра

Y=3/2x ln(e-1/3x) найти точки возрастания и убывания (расписать )

👇
Ответ:
maks6434
maks6434
08.02.2021
Y = (3/2)*x*ln^(-1/3)x
Найдем точки разрыва функции.
x₁ = 1
1. Находим интервалы возрастания и убывания. Первая производная.
f`(x) = 3 / [2* (lnx)²/³ ] - 1 /[2*ln⁴/³(x)]
или
f`(x) = [3*lnx - 1] / [2*ln⁴/³(x)]
Находим нули функции.
Для этого приравниваем производную к нулю
3 ln(x) - 1 = 0
Откуда:
x₁ = e¹/³
(0 ;1)  f`(x) = 0
(1; e¹/³)    f'(x) < 0 функция убывает
(e¹/³ ; +∞)  f'(x) > 0    функция возрастает
В окрестности точки x = e¹/³ производная функции меняет знак с (-) на (+). Следовательно, точка x = e¹/³ - точка минимума.
4,7(99 оценок)
Открыть все ответы
Ответ:
big31
big31
08.02.2021
1)
{ 2x - 3y = 4
{ 5x + 6y = 7
Умножаем 1 уравнение на 2 и складываем уравнения
4x - 6y + 5x + 6y = 8 + 7
9x = 15
Эта система имеет 1 решение

2)
{ 4x - y = 2
{ -4x + y = -13
Складываем уравнения
4x - y - 4x + y = 2 - 13
0 = -11
Эта система не имеет решений

3)
{ x + 2y = 1
{ 2x + 3y = 2
Умножаем 1 уравнение на -2 и складываем уравнения
-2x - 4y + 2x + 3y = -2 + 2
-y = 0
Эта система имеет 1 решение

4)
{ -4x - 4y = 2
{ 2x + 2y = -1
Умножаем 2 уравнение на 2 и складываем уравнения
-4x - 4y + 4x + 4y = 2 - 2
0 = 0
Эта система имеет бесконечное множество решений.

Какая из данных систем уравнений имеет бесконечное множество решений два икс минус 3 игрек равно чет
4,6(37 оценок)
Ответ:
mirnayanatulya
mirnayanatulya
08.02.2021
Без графиков можно так. Если (x₀,y₀) - какое-нибудь решение и |x₀|≠|y₀|, то (-x₀,-y₀), (y₀,x₀), (-y₀,-x₀) - еще 3 различных решения. Значит, чтобы было 2 решения, должно быть x₀=y₀, либо x₀=-y₀.
1) Если x₀=y₀, то |x₀|=1/2=|y₀|, откуда а=1/2. Из неравенства
|x+y|≤|x|+|y|≤√(2(x²+y²)) верного для всех х,у при а=1/2 получаем
2-|x|-|у|≤|x|+|y|≤1, т.е. |x|+|y|=1. Подставляя это во второе уравнение системы, получим 4 точки, из которых подходят только две: (1/2;1/2) и (-1/2;-1/2). Т.е. при а=1/2 система действительно имеет только 2 решения. 
2) Если x₀=-y₀, то |x₀|=1=|y₀|, откуда а=2. Из неравенства
2|x|=|(x+y)+х+(-у)|≤|x+у|+|x|+|y|=2, следует что |x|≤1 и аналогично |y|≤1, а значит x²+y²=2 может быть только если |x|=1 и |y|=1. Из 4 точек подходят только две (-1;1) и (1;-1), значит при а=2 система тоже имеет только 2 решения. Итак, ответ: а∈{1/2; 2}.
4,4(22 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ