Линейное диофантово уравнение 7х+4у=123. Если коэффициенты перед х и у простые числа, то это уравнение имеет решение в целых числах. НОД(7,4)=1 ⇒ 7 и 4 - простые числа. Подберём частное решение . В этом уравнении это сделать не совсем просто, поэтому воспользуемся теоремой: чтобы найти решение уравнения ах+ву=с при взаимно-простых а и в, нужно найти решение уравнения ах+ву=1. Тогда числа составляют решение уравнения ах+ву=с . 7х+4у=1 ⇒ .
Из (*) вычтем (**) , получим:
Чтобы (у-246) было целым, надо чтобы (х+123) нацело делилось на 4, то есть х+123=4к ⇒ х=4к-123 , k∈Z . Тогда
( sin²x-sinx·cosx)-(5cosx-5sinx)=0
sinx(sinx-cos)-5 (cosx-sinx)=0
sinx(sinx -cosx) - (-5) (sinx-cosx)=0
(sinx-cosx) (sinx+5)=0
1) sinx-cosx=0
разделим на cos x ( x≠π\2 +πn, n∈Z)
tgx-1=0
tgx=1
x=π\4+πn n∈Z
2) sinx+5=0
sinx=-5 нет решений