Точку пересечения биссектрисы с АD обозначим Н. Рассмотрим ᐃ АВD В нем биссектриса ВН является высотой, поэтому ᐃАВD - равнобедренный. АН=НD=84. А так как ВD=DС, то АВ=ВD=DС, и ВС=2АВ. Биссектриса треугольника делит противоположную сторону в отношении длин прилежащих сторон. В ᐃАВС биссектриса делит АС в отношении АВ:ВС=1:2 и АС=3АE Из В проведем параллельно АС прямую до пересечения с продолжением медианы АD. Точку пересечения обозначим P. ᐃ ВDЕ =ᐃ АDС т.к. ВD=DС, углы при D равны как вертикальные, ∠СВP=∠ВСА, ⇒ ВС=АС=3 АE Треугольники АНE и BНP прямоугольные и подобны ( ∠ ВPА=∠PАСкак углы при параллельных АС и ВP и секущей ВС). АE:ВP=НE:ВН=1:3 ВН=3НE ВЕ=4НЕ НE=ВE:4=42 ВН=3*42=126 Из тр-ка АНE АE=(АН²+НE²) АE=√(84²+42²) Возвести большое число в квадрат и извлечь корень из него можно разложением числа на множители. АE=√(6²14²+3²*14²)=√14²(6²+3²)=14*3√5=42√5 АС=3*42√5=126√5 Из тр-ка АВН АВ=√(ВН²+АН²) АВ=√(9²*14²+6²*14²)=√14²(9²+6²)=14*√(9*13)=42√13 ВС=2АВ=84√13 Найдены все три стороны.
Переводим смешанную дробь в неправильную и делим числитель на знаменатель, т. е. переводим обыкновенную дробь в десятичную (в данном случае периодическую (бесконечную)).
После запятой в периодической дроби ставится в скобки бесконечно повторяющееся число.
8t^4 - 8t^2 - t + 1 = 0
8t^2*(t^2 - 1) - (t - 1) = 0
8t^2*(t - 1)(t + 1) - (t - 1) = 0
(t - 1)(8t^2(t + 1) - 1) = 0
t1 = cos x = 1; x1 = 2pi*k
8t^3 + 8t^2 - 1 = 0
8t^3 + 4t^2 + 4t^2 + 2t - 2t - 1 = 0
(2t + 1)(4t^2 + 2t - 1) = 0
t2 = cos x = -1/2; x2 = +-2pi/3 + 2pi*n
Решаем квадратное уравнение
4t^2 + 2t - 1 = 0
D/4 = 1 + 4*1 = 5
t3 = cos x = (-1 - √5)/4; x3 = +-arccos( (-1 - √5)/4 ) + 2pi*m
t4 = cos x = (-1 + √5)/4; x4 = +-arccos( (-1 + √5)/4 ) + 2pi*q