1) а) В точке пересечения графика с осью OX y равен 0 3x-4=0⇒3x=4⇒x=4/3 A(4/3;0) - точка пересечения графика с осью OX б) В точке пересечения графика с осью YX x равен 0 y=3*0-4⇒y=-4 B(0;-4) - точка пересечения графика с осью OY 2) x=-3,2⇒y=3*(-3,2)-4=-9,6-4=-13,6 3) y=8⇒3x-4=8⇒3x=8+4⇒3x=12⇒x=4 4) y=kx+b - уравнение прямой в общем виде. Параллельные прямые имею одинаковые угловые коэф-ты y=3x-4⇒k=3 - угловой коэф-т Значит новая прямая имеет вид: y=3x+b Нужно найти b. По условию y(0)=-5⇒3*0+b=-5⇒b=-5⇒ y=3x-5 - искомое уравнение прямой
Лине́йная а́лгебра — раздел алгебры, изучающий объекты линейной природы: векторные (или линейные) пространства, линейные отображения[⇨], системы линейных уравнений[⇨], среди основных инструментов, используемых в линейной алгебре — определители, матрицы[⇨], сопряжение. Теория инвариантов[en] и тензорное исчисление обычно (в целом или частично) также считаются составными частями линейной алгебры[1]. Такие объекты как квадратичные и билинейные формы[⇨], тензоры[⇨] и операции как тензорное произведение непосредственно вытекают из изучения линейных пространств, но как таковые относятся к полилинейной алгебре. Линейная алгебра обобщена средствами общей алгебры, в частности, современное определение линейного (векторного) пространства[⇨] опирается исключительно на абстрактные структуры, а многие результаты линейной алгебры обобщены на произвольные модули над кольцом. Более того, методы линейной алгебры широко используются и в других разделах общей алгебры, в частности, нередко применяется такой приём, как сведение абстрактных структур к линейным и изучение их относительно простыми и хорошо проработанными средствами линейной алгебры, так, например, реализуется в теории представлений групп[⇨]. Функциональный анализ возник как применение методов математического анализа и линейной алгебры к бесконечномерным линейным пространствам, и во многом базируется на методах линейной алгебры и в дальнейших своих обобщениях. Также линейная алгебра нашла широкое применение в многочисленных приложениях (в том числе, в линейном программировании[⇨], в эконометрике[⇨]) и естественных науках (например, в квантовой механике[⇨]).
2)18(б-3)+6(3б+1) = 18б-54+18б+6 = 18б-48
3)1,1(1-х)+1,2(1+х) = 1,1-1,1х+1,2+1,2х = 2,3+0,1х
4)6р-2(р+1)+4(р-8) = 6р-2р-2+4р-32 = 8р-34
5)-2+3(3с-2)-2(с-1) = -2+9с-6-2с+2 = 7с-6
6)-1,6у-0,3(у+4)+0,4(2у-1) = -1,6у-0,3у-1,2+0,8у-0,4 = -1,1у-1,6