Степенью многочлена от нескольких переменных называют наивысшую степень входящих в него одночленов.
Степень одночлена стандартного вида – это сумма показателей степеней всех переменных, входящих в его запись; если в записи одночлена нет переменных, и он отличен от нуля, то его степень считается равной нулю; число нуль считается одночленом, степень которого не определена.
Степень первого одночлена – 5 х у^4 – 1 + 4 = 5
Степень второго одночлена – х^2у^2 – 2 + 2 = 4
Степень третьего многочлена – 2х+у – 1 + 1
5 > 4 > 1, степень первого одночлена больше остальных, а значит, будет являться и степенью всего многочлена.
ответ: 5.
ответ: Нет.
Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.
Пусть искомый многочлен f(x) существует.
Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).
Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней
5^x=15+10=25
x=2
5^x=15-10=5
x=1
2)3*3^(2(x+2))-3^(x+2)-2=0
D=1+24=25
3^(x+2)=(1+5)/6=1
x+2=1
x=-1
3^(x+2)=1-5 - нет реш, тэ.к. 3^(X+2)>0