М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
57494967468746
57494967468746
04.02.2022 06:47 •  Алгебра

Какому из выражений равно выражение a+a+a+a+a+a? 1)6а 2) а 6 3) а+6 4)6

👇
Ответ:
даша33100
даша33100
04.02.2022
Выражение равно 6а, тоесть под буквой а.
4,4(81 оценок)
Открыть все ответы
Ответ:
МахаХей
МахаХей
04.02.2022

ответ: вот

объяснение:

первый этап. прямой ход гаусса.

исключим элементы 1-го столбца матрицы ниже элемента a1,1. для этого сложим строки 2,3,4 со строкой 1, умноженной на 2,-4,1 соответственно:

1

−4

0

−7

4

0

−7

1

−11

14

0

13

1

33

−14

0

−2

1

−6

8

исключим элементы 2-го столбца матрицы ниже элемента a2,2. для этого сложим строки 3,4 со строкой 2, умноженной на 13/7,-2/7 соответственно:

1

−4

0

−7

4

0

−7

1

−11

14

0

0

20

7

88

7

12

0

0

5

7

20

7

4

исключим элементы 3-го столбца матрицы ниже элемента a3,3. для этого сложим строку 4 со строкой 3, умноженной на -1/4:

1

−4

0

−7

4

0

−7

1

−11

14

0

0

20

7

88

7

12

0

0

0

−6

1

делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):

1

−4

0

−7

4

0

1

1

7

11

7

−2

0

0

1

22

5

21

5

0

0

0

1

1

6

из расширенной матрицы восстановим систему линейных уравнений:

1  x1

−4  x2

+

0  x3

−7  x4

=

4

0  x1

+

1  x2

1

7

 x3

+

11

7

 x4

=

−2

0  x1

+

0  x2

+

1  x3

+

22

5

 x4

=

21

5

0  x1

+

0  x2

+

0  x3

+

1  x4

=

1

6

базисные переменные x1, x2, x3, x4.

имеем:

x1=

4

+

4

· x2 +

7

· x4

x2=

−2

+

1

7

· x3

11

7

· x4

x3=

21

5

22

5

· x4

x4=

1

6

подставив нижние выражения в верхние, получим решение.

x1=

13

10

x2=

31

30

x3=

74

15

x4=

1

6

4,8(3 оценок)
Ответ:
даша3171
даша3171
04.02.2022
Пусть b1,b2,,bn, - члены прогрессии, а q - её знаменатель. Сумма прогрессии S=b1/(1-q). По условию, b1/(1-q)=6. Одновременно по условию S1=b1²+b2²++bn²+=12. Но S=b1*(1+q+q²+q³), а S1=b1²*(1+q²+q⁴+q⁶+). Получена система уравнений:

b1*(1+q+q²+q³)=6
b1²*(1+q²+q⁴+q⁶+)=12

Возведём первое уравнение в квадрат:

b1²*(1+q+q²+q³)²=36
b1²*(1+q²+q⁴+q⁶+)=12

Разделив теперь первое уравнение на второе, придём к уравнению относительно q: (1+q+q²+q³+)²/(1+q²+q⁴+q⁶+)=3. Но в скобках числителя  - бесконечная геометрическая прогрессия со знаменателем q, её сумма S2=1/(1-q). В скобках знаменателя - бесконечная геометрическая прогрессия со знаменателем q², её сумма S3=1/(1-q²). Отсюда следует уравнение (1-q²)/(1-q)²=3, которое приводится к квадратному уравнению 2*q²-3*q+1=0. Решая его, находим q1=1 и q2=1/2. Но при q=1 сумма прогрессии была бы равна бесконечности, поэтому q=1/2. ответ: 1/2.

 
4,8(50 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ