Объяснение:
a) (2x - 6)(8х + 5) + (3 - 4x)(3 + 4x) =55
16x²+10x-48x-30+9-16x²=55
-38x-21=55
-38x=55+21
-38x=76
x=76:(-38)
x= -2
б) (x + 2)(x + 1) - (x - 3)(x + 4) = 12
x²+x+2x+2-(x²+4x-3x-12)=12
x²+x+2x+2-x²-x-12=12
2x+2+12=12
2x+2=0
2x=-2
x=-2:2
x=-1
b) (- 4x + 1)(x- 1) - x = (5 - 2x)(2x + 3) - 17
-4x²+4x+x-1-x=10x+15-4x²-6x-17
-4x²+4x-1=10x+15-4x²-6x-17
4x-1=10x+15-6x-17
4x-1=4x-2
-1=-2
ответ: нет решений.
г) (x + 10)(x - 5) - (x - 6)(x + 3) = 16
x²-5x+10x-50-(x²+3x-6x-18)=16
x²-5x+10x-50-x²+3x+18=16
8x-32=16
8x=16+32
8x=48
x=48:8
x=6
д) (2х - 3)(4х + 3) - 8x² = 33
8x²+6x-12x-9-8x²=33
-6x-9=33
-6x=33+9
-6x=42
x=42:(-6)
x=-7
e) 21x² - (3x - 7)(7x - 3) = 37
21x²-(21x²-9x-49x+21)=37
21x²-21x²+58x-21=37
58x-21=37
58x=37+21
58x=58
x=58:58
x=1
1) Представим одночлен 5а в виде суммы одночленов: 5а=4а+а.
2) Произведем группировку.
3) Вынесем общий множитель за скобки.
4a²-5a+1 =
= 4a²-(4a + а) +1 =
= 4a²- 4a - а +1 =
= (4a²- 4a) - (а - 1) =
= 4а·(а- 1) - (а - 1) =
= (а-1)·(4а-1)
Вопрос: А каким образом из 4а·(а- 1) - (а - 1) получилось (а-1)·(4а-1)?
4а·(а- 1) - (а - 1) = 4а·(а- 1) - 1·(а - 1) =
выделенные одинаковые скобки (а-1) это и есть общий множитель, его запишем в первых скобках, а во вторых скобках запишем то, что подчеркнуто 4а и -1
= 4а·(а- 1) - 1·(а - 1) = (а-1)·(4а-1)