Приведу пример попроще. Число 99 делится на 33, 9999 тоже делится на 33, 999999 тоже делится на 33 Сколько бы много чисел не было в числе, оно делится на какое то число, если делится на него последние цифры числа (количество цифр зависит от делителя) и если делимое число состоит из кратного количества цифр от минимального делимого. Т.Е. 99 (состоит из двух цифр) это минимальное делимое которое делится на 33, отсюда количество цифр в большем числе должно быть кратно 2, т.е. 9999, 999999, 99999999 а не 999, или 99999 Так же и в нашем примере, найдем минимальное число, которое делится на 13 и состоит из девяток. это число 999999 - состоит из шести цифр.
Теперь на 13 будут делится все числа состоящие из девяток, количество цифр в которых кратно 6, т.е. 999999999999 (12 цифр), 999999999999999999 (18 цифр) и т.д. а также наше число состоящее из 666 цифр, потому что количество цифр кратно 6 666/6 = 111
Если шифр пятизначный, то зафиксировав на втором месте цифру 5, а на последнем - цифру 0, получаем общее количество кодов для составления шифра замка: 5*1*5*5*1= 125 (Пояснение. Имеем 5 цифр. На первое место можно поставить любую из имеющихся пяти цифр, т.е. 7,8,5,1 и 0. Второе место "занято" цифрой 5, т.е. всего один вариант. На третье и на четвёртое место можно поставить любую из имеющихся пяти цифр (см. рассуждение выше). На последнем месте - единственный вариант - цифра ноль). Осталось только перемножить полученные варианты и вывести результат)
2. -4mn
3.6x^2y
4. -2ab
5.