1. у=-3х+1. Это монотонно убывающая функция, поэтому наибольшее и наименьшее значения достигаются на концах отрезка.
Наибольшее значения: у (-2) = (-3)*(-2) + 1 =7
Наименьшее значение: у (1) = (-3)*(1) + 1 = -2.
2. Находим вершину параболы: у=х²-4х +4 -4 = (х-2)² - 4, т. е вершина находится в точке х=2, при этом функция достигает наименьшего значения у= -4. Оно же будет наименьшим на отрезке [0:3]. Наибольшее будет при х=0 (т. к. эта точка дальше отстоит от вершины, чем х=3). при этом у (0) = 8
Объяснение:
Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 42.
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=42
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=42
2n+1+2n+5=42
4n=36
n=9
9; 10 и 11; 12
(12²-11²)+(10²-9²)=23+19
23+19=42 - верно
у²=⁺₋√(6,25/9)=⁺₋2,5/3=⁺₋25/30=⁺₋5/6