см. объяснение ниже.
Логарифмируем по основанию 15
верно, значит и исходное равенство верно.
О т в е т. 2
1) Разность арифметической прогрессии: . Тогда по формуле n-го члена арифметической прогрессии, найдем четырнадцатый член:
2) Пятый член:
Сумма четырех первых членов геометрической прогрессии:
3) Знаменатель прогрессии:
Сумма бесконечно убывающей геометрической прогрессии:
4) Здесь в условии опечатка, скорее всего d=-0.5, а если так как есть то задача решения не имеет.
ответ: 7
5) - геометрическая прогрессии
6) 6; 12; .... ; 96; 102; 108; .... ;198 - последовательность чисел, кратных 6.
Посчитаем сколько таких чисел:
Сумма первых 33 членов а.п.:
Нам нужно найти сумму всех натуральных чисел превышающих 100 и меньших 200 , которые кратны 6
, значит найдем сумму не превышающих 100 и отнимем от суммы не превышающих 200
Искомая сумма:
x∈(0;1/5)∪(25;∞)
Объяснение:
ОДЗ: x>0
- логарифмическое квадратное неравенство, замена переменной:
log₅x=t,
t²-t>2, t²-t-2>0 -метод интервалов:
1. t²-t-2=0, t₁= - 1, t₂= 2
2. + - +
-----------(- 1)-----------(2)---------------->t
3. t<-1, t>2
обратная замена:
1. t<-1, log₅x<-1, log₅x<log₅5⁻¹, log₅x<log₅(1/5)
основание логарифма а=5, 5>1, =. знак неравенства не меняем:
x∈(0; 1/5)
2. t>2, log₅x>2, log₅x.log₅5², log₅x>log₅25
x∈(25;∞)
x∈(0;1/5)∪(25;∞)
решение представлено на фото