Нет, к сожалению, решается это задание, например, с метода интервалов. Вы сделали двойную работу, раскрыли скобки, а потом нашли корни левой части. Это можно было сделать, не прибегая к решению квадратного уравнения, а просто приравнять к нулю сначала одну, потом другую скобки, итак, корни найдены. Это -3 и 9. Разбиваем ими числовую ось на интервалы (-∞;-3);(-3;9);(9;+∞), и устанавливаем знак на каждом промежутке, для чего можете просто подставить число из данного интервала и узнать знак левой части неравенства. Например, на промежутке (-∞;-3) берем -4
Подставляем в левую часть неравенства, получаем (-4+3)(-4-9)
и видим, что знак там в первой скобке минус и во второй минус, а минус на минус даст плюс, аналогично во втором интервале получим минус, и в третьем плюс. Нас интересуют плюсы. Поэтому ответом будет объединение промежутков (-∞;-3)∪(9;+∞)
Если перенести из правой в левую часть 20ху, то получим
4х²-20ху+25х²=0
(2х)²-2*2х*5у+(5у)²= 0
(2х-5у)²=0
Квадрат числа равен нулю, если само число равно нулю, т.е. если
2х-5у=0
-5у=-2х,
у=0,4х
все точки лежат на прямой, которая является графиком прямой пропорциональности.
Для определенности, возьмем два значения х и найдем по ним два значения у, т.е. найдем две точки
если х=о, то у=0, (0;0) - это начало системы координат. Если х=5, то у=2
Точка (5;2)
Через них проведите прямую , вот все точки данного условия будут лежать на этой прямой. Я так думаю.)
дана функция f(x)=x^3+3x^2
уравнение касательной к графику функции в точке а:
y(a) = f(a)+f'(a)(x-a)
Это уравнение прямой с угловым коэффициентом f'(a) (т.е. это тангенс угла наклона прямой к оси абцисс)
Условие параллельности оси абцисс: угол равен 0, следовательно, и его тангенс 0, следовательно и f'(a)=0. а - искомые точки
Берём производную: f' (x) = 3x^2+6x, приравниваем к нулю и решаем полученное уравнение относительно x:
3x^2+6x=0
x1=0
x2=2
Эти точки и есть искомые
Теперь напишем касательные:
в точке x1=0 касательная В ТОЧНОСТИ СОВПАДАЕТ С ОСЬЮ АБЦИСС
в точке x2=2 y= f(2)+0*(x-2) = 8- 3*4 = -4
это прямая y=-4