график ф-ии будет задан формулой y=(x+4)(x^2-4x+4)-22
y = x^3-4x^2+4x+4x^2-16x+16-22
y = x^3 - 12x - 6
несомненно, что это кубическая парабола, найдем ее точки перегиба
y' = 3x^2 - 12 = 0 решив это уравнение получаем, что точки перегиба в точках x=-2 и х=2
найдем значения ф-ии в точках перегиба и на концах отрезка
x=-4 y=-22
x=-2 y=10
x=2 y=-22
x=3 y=-15
максимальное значение ф-ии в точке х=-2 равное 10
ответ 10
но проще всего просто написать программку, которая перебирает значение с шагом в 1/1000 по всему заданному приоду и выводит максимум и минимум
ответ во влажении!
################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################
a) x = 23 или x = 8; b) x = 3-1 или x = 1/3; c) или x = 1.Приведем основные свойства логарифма.P1. Основное логарифмическое тождество:где a > 0, a ≠ 1 и b > 0.P2. Логарифм произведения положительных сомножителей равен сумме логарифмов этих сомножителей:loga N1·N2 = loga N1 + loga N2 (a > 0, a ≠ 1, N1 > 0, N2 > 0).Замечание. Если N1·N2 > 0, тогда свойство P2 примет видloga N1·N2 = loga |N1| + loga |N2| (a > 0, a ≠ 1, N1·N2 > 0).P3. Логарифм частного двух положительных чисел равен разности логарифмов делимого и делителя (a > 0, a ≠ 1, N1 > 0, N2 > 0).Замечание. Если , (что равносильно N1N2 > 0) тогда свойство P3 примет вид (a > 0, a ≠ 1, N1N2 > 0).P4. Логарифм степени положительного числа равен произведению показателя степени на логарифм этого числа:loga N k = k loga N (a > 0, a ≠ 1, N > 0).Замечание. Если k - четное число (k = 2s), тоloga N 2s = 2s loga |N| (a > 0, a ≠ 1, N ≠ 0).P5. Формула перехода к другому основанию: (a > 0, a ≠ 1, b > 0, b ≠ 1, N > 0),в частности, если N = b, получим (a > 0, a ≠ 1, b > 0, b ≠ 1).(2)Используя свойства P4 и P5, легко получить следующие свойства (a > 0, a ≠ 1, b > 0, c ≠ 0),(3) (a > 0, a ≠ 1, b > 0, c ≠ 0),(4) (a > 0, a ≠ 1, b > 0, c ≠ 0),(5)и, если в (5) c - четное число (c = 2n), имеет место (b > 0, a ≠ 0, |a| ≠ 1).(6)Перечислим и основные свойства логарифмической функции f(x) = loga x:Область определения логарифмической функции есть множество положительных чисел.Область значений логарифмической функции - множество действительных чисел.При a > 1 логарифмическая функция строго возрастает (0 < x1 < x2 Þ loga x1 < loga x2), а при 0 < a < 1, - строго убывает (0 < x1 < x2 Þ loga x1 > loga x2).loga 1 = 0 и loga a = 1 (a > 0, a ≠ 1).Если a > 1, то логарифмическая функция отрицательна при x Î (0;1) и положительна при x Î (1;+¥), а если 0 < a < 1, то логарифмическая функция положительна при x Î (0;1) и отрицательна при x Î (1;+¥).Если a > 1, то логарифмическая функция выпукла вверх, а если a Î (0;1) - выпукла вниз.Следующие утверждения (см., например, [1]) используются при решении логарифмических уравнений.Утверждение 2. Уравнение loga f(x) = loga g(x) (a > 0, a ≠ 1) равносильно одной из систем (очевидно, выбирается та система, неравенство которой решается проще)f(x) = g(x), f(x) = g(x),f(x) > 0,g(x) > 0.Утверждение 3. Уравнение logh(x) f(x) = logh(x) g(x) равносильно одной из системf(x) = g(x), f(x) = g(x),h(x) > 0,h(x) > 0,h(x) ≠ 1,h(x) ≠ 1,f(x) > 0,g(x) > 0.