BM = 12,5см
Объяснение:
Р (треугольника АВС) = АВ + ВС + СА = 42 см; также по условию задано, что АС = АМ + МС, потому как на стороне АС взята точка М; Р (треугольника АВМ) = АВ + ВМ + МА = 32 см; Р (треугольника ВМС) = ВС + СМ + МВ = 35 см; тогда Р (треугольника АВС) = Р (треугольника АВМ) - МВ + Р (треугольника ВМС) - МВ; Подставим заданные значения в уравнения периметра треугольника АВС, неизвестную сторону МВ обозначим через переменную х:
42 = 32 - х + 35 - х;
2х = 32 + 35 - 42;
2х = 67 - 42;
2х = 25;
х = 25 : 2;
х = 12,5 (см) - сторона ВМ.
ответ: ВМ = 12,5 см.
Если прямая проходит через точку, то её координаты удовлетворяют уравнению прямой.
Другими словами, если подставить координаты точки, через которую проходит прямая, в уравнение прямой, мы получим верное равенство.
2х-у=4
А (0; 4)
х=0, у=4
2*0-4 = -4
-4 ≠ 4
Равенство неверное.
Вывод: прямая 2х-у=4 не проходит через точку А (0; 4).
В (2; 0)
х=2, у=0
2*2-0 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку В (2; 0).
С (-3; -10)
х= -3, у= -10
2*(-3)-(-10) = -6+10 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку С (-3; -10).
ответ: прямая проходит через точки В и С.
4^x=1
4^x=4^0
x=0 г)) [ -1,2]