Пусть х (км/ч) - скорость течения, тогда (10+х) - скорость моторной лодки по течению, а (10-х) - скорость моторной лодки против течения. Составим уравнение.
39:(10+х)+28:(10-х)=7
39(10-х)+28(10+х)=7(10+х)(10-х)
390-39х+280+28х=7(100+10х-10х-х^2)
670-11х=700-х^2
7x^2-11х+670-700=0
7х^2-11х-30=0 -квадратное уравнение
Решаем квадратное уравнение.
D (Дискриминант уравнения) = b 2 - 4ac = 961
х1=(-b+√D)/2a=(11+31)/(2*7)=42/14=3
х2=(-b-√D)/2a=(11-31)/(2*7)=-20/14=-10/7
Скорость течения: 3 км/ч
Проверка:
39:(10+3)+28:(10-3)=7
39:13+28:7=7
3+4=7
7=7
ответ: скорость течения реки 3 км/ч
85 км/ч
Объяснение:
пусть х - скорость второго автомобиля, а у - время, за которое он приехал к финишу
тогда скорость первого - х+25, а время - у-3
составим систему уравнений:
{612/х = у
{612/(х+25) = у-3
{ху = 612
{(х+25)(у-3) = 612
выразим х из первого уравнения:
х=612/у
подставим во второе, чтобы найти у:
(612/у + 25) (у-3) = 612
раскроем скобки:
612/у*у + 612/у *(-3) + 25у +25*(-3)=612
612 -1836/у +25у -75 =612
-1836/у + 25у = 612-612+75
-1836/у+25у =75
избавимся от знаменателя, для этого умножим все на у
-1836 + 25у^2 = 75у
25у^2 - 75у -1836 = 0
выразим -75у в виде разности:
25у^2 +180у -255у -1836=0
вынесем общий множитель за скобки:
5у(5у+36) - 51(5у + 36) =0
(5у+36) (5у-51) = 0
найдём у1:
5у+36=0
5у=-36
у=-36/5 не может быть, т.к. время не может быть отрицательным
найдём у2:
5у-51=0
5у=51
у=10,2
теперь, зная у, найдём х:
х=612/10,2=60
значит скорость второго - 60 км/ч
скорость первого на 25 больше (по условию)
60+25=85
проверим:
612:85= 7,2 (ч) - время первого
612:60= 10,2 (ч) - время второго
10,2-7,2=3 (ч) - на столько первый приехал раньше
значит решено верно!