7
Объяснение:
Найти значение выражения: (у²-6у+9)/(у²-9) ∶ (10у-30)/(у²+3у) при у=70.
(у²-6у+9)/(у²-9) ∶ (10у-30)/(у²+3у)=
В числителе первой дроби развёрнут квадрат разности, свернуть, в знаменателе разность квадратов, развернуть.
В числителе второй дроби вынести 10 за скобки, в знаменателе вынести у за скобки:
=(у-3)²/[(у-3)(у+3)] : [10(у-3)]/[у(у+3)]=
Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй, а знаменатель первой умножить на числитель второй.
=[(у-3)(у-3)у(у+3)] : [(у-3)(у+3)10(у-3)]=
сокращение (у-3) и (у-3) на (у-3) 2 раза, (у+3) и (у+3) на (у+3):
=у/10=70/10=7
7
Объяснение:
Найти значение выражения: (у²-6у+9)/(у²-9) ∶ (10у-30)/(у²+3у) при у=70.
(у²-6у+9)/(у²-9) ∶ (10у-30)/(у²+3у)=
В числителе первой дроби развёрнут квадрат разности, свернуть, в знаменателе разность квадратов, развернуть.
В числителе второй дроби вынести 10 за скобки, в знаменателе вынести у за скобки:
=(у-3)²/[(у-3)(у+3)] : [10(у-3)]/[у(у+3)]=
Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй, а знаменатель первой умножить на числитель второй.
=[(у-3)(у-3)у(у+3)] : [(у-3)(у+3)10(у-3)]=
сокращение (у-3) и (у-3) на (у-3) 2 раза, (у+3) и (у+3) на (у+3):
=у/10=70/10=7
f'(x) = n*x^(n-1).
То есть: Степень у икса (n) выносится на передней план со знаком умножения, но степень убавляется на единицу. ) Как-то так)
Поэтому, если подробно расписывать, то это выглядит так:
f(x)=x^3-12x^2+45x-59
f ' (x)= 3*x^(3-1=2) - (2*12)x^(2-1=1) + 1*45x^(1-1=0) - 0. Производная от числа a (от любого числа без икса) всегда равна нулю.