1.
а)2х/3у;
б)(х+1)/х.
2.
а)(х-2)/х;
б)(ах²)/(8у²).
3. 8.
Объяснение:
1. Сократить дроби:
а)[16x(x-y)]/[24y(x-y)]=
сокращение (x-y) и (x-y) на (x-y), 16 и 24 на 8:
=2х/3у;
б)(х²+х)/х²=[x(x+1)]/x²=
сокращение х и x² на х:
=(х+1)/х.
2. Выполнить действия:
а)(14х-9)/17х+(3х-25)/17х=
=(14х-9+3х-25)/17х=
=(17х-34)/17х=
=[17(x-2)]/17x=
сокращение 17 и 17 на 17:
=(х-2)/х;
б)(ах+ау)/ху³ * х³у/(8х+8у)=
=[a(x+y)]/ху³ * х³у/[8(x+y)]=
Чтобы умножить дробь на дробь, нужно числитель первой дроби умножить на числитель второй дроби, а знаменатель первой дроби умножить на знаменатель второй дроби:
=[a(x+y)*х³у] / [ху³ *8(x+y)]=
сокращение (x+y) и (x+y) на (x+y), х и х³ на х, у и у³ на у:
=(ах²)/(8у²).
3. Найти значение выражения:
(у²-4у+4)/(у²-4) : (10у-20)/(у²+2у)= при у=80
В числителе первой дроби развёрнут квадрат разности, свернуть, в знаменателе разность квадратов, развернуть.
В числителе второй дроби вынести 10 за скобки, в знаменателе вынести у за скобки:
=(у-2)²/(у-2)(у+2) : [10(y-2)]/[y(y+2)]=
Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй, а знаменатель первой умножить на числитель второй.
=[(у-2)(у-2)*y(y+2)] : [(у-2)(у+2)*10(y-2)]=
сокращение (у-2) и (у-2) на (у-2) 2 раза, (у+2) и (у+2) на (у+2)
=у/10=80/10=8.
1.а) Область определения находим из системы неравенств
х+44>0; 2х-22>0;
х>-44;х>22/2⇒x∈(11;+∞).
4а) ㏒₃(х-4)+㏒₃(х+7)=㏒₃26; ОДЗ уравнения х больше 4, (х-4)(х+7)=26;
х²+7х-4х-28-26=0; х²+3х-54=0; По теореме, обратной теореме Виета, х₁=-9∉ОДЗ, не является корнем. х₂=6
4в) ㏒²₂х-㏒₂х-30=0; ОДЗ уравнения х∈(0;+∞) Пусть ㏒₂х=у, тогда у²-у-30=0; по теореме, обр. теореме Виета, у₁=-5; у₂=6 тогда ㏒₂х=-5; х=2⁻⁵; х=1/32 -входит в ОДЗ, корень.
㏒₂х=6; х=2⁶=64- входит в ОДЗ, корень.
5а)㏒₁/₅(22х-2)≥0
ОДЗ неравенства 22х-2>0; x>1/11
Заменим 0=㏒₁/₅1, т.к. основание логарифма меньше 1, то 22х-2≤1
22х≤3; х≤3/22; с учетом ОДЗ решением неравенства будет х∈(1/11;3/11)
х²(х²-25)=0
х²=0 х²-25=0
х=0 х²=25
х=5