Вектор, перпендикулярный плоскости 2x + 3y - 4z + 2 = 0 имеет координаты (2; 3; -4). Он обязательно будет лежать в плоскости, перпендикулярной данной, уравнение которой нам нужно составить. Отложим этот вектор, например, от точки A (-3; 2; 1), т. е. проведём вектор АС, который лежит в искомой плоскости. Получим точку С (-1; 5; -3), которая тоже лежит в искомой плоскости. Зная координаты трёх точек A (-3; 2; 1), В (4; -1; 2) и С (-1; 5; -3), лежащих в одной плоскости, найдём уравнение этой плоскости. Для этого составляем определитель: | x-(-3) 4-(-3) -1-(-3) | | y-2 -1-2 5-2 | = 0 | z-1 2-1 -3-1 |
12мин=0,2ч 45мин=0,75ч всё расстояние между А и Б примем за единицу х-время велосипедиста х-0,75 время мотоциклиста 1/х скорость велосипедиста 1/(х-0,75) скорость мотоциклиста 1/0,2=5 скорость сближения 1/х+1/(х-0,75)=5 х-0,75+х=5х(х-0,75) 5х²-3,75х+0,75=0 разделим всё на 5 х²-1,15х+0,15=0 Д=1,15²-4*0,15=1,3225-0,6=0,7225=0,85² х₁=(1,15-0,85):2=0,15ч=15/100 от 60мин =9минут, что не может удовлетворять условию, так как они вместе до встречи едут 12мин, значит , за 9 мин проехать всё он никак не может х₂=(1,15+0,85):2=1час ответ : велосипедист проезжает за 1 час
180/12*2=30
180/12*5=75