Раскладываем числитель с заменой a=x:
Обратная замена:
Итак,числитель имеет вид (x-4)(x+4)(x-3)(x+3).
Раскладываем знаменатель и выясняем,при каких значениях он равен нулю:
Знаменатель имеет вид (x-3)(x+4). На будущем графике мы обязаны выколоть точки при x=3 и x=-4.
Сокращаем функцию:
Строим график функции y=x-x-12 с выколотыми точками (на рисунке это парабола синего цвета.Точки выколоты).
Мы обязаны знать и ординаты этих точек: При x=3 y=-6,при x=-4 y=8.
Определим функции прямых,которые будут иметь с графиком одну общую точку:
.
Прямые y=-1.25x+3(на рисунке красным цветом) и y=-3x+3(жлтым) имеют с данным графиком одну общую точку. При остальных значениях k семейство прямых y=kx+3 имеет две общие точки.
P.S.: Надеюсь,вс понятно.
ab+ac+ad+bx+cx+dx=(ab+ac+ad)+(bx+cx+dx)=a(b+c+d)+x(b+c+d)=(a+x)(b+c+d)
2)
7р-7k-px+kx+k-p=(7p-px-p)-(7k-kx-k)=p(7-x-1)-k(7-x-1)=(p-k)(7-x-1)