Формула работы А = P t Пусть первый рабочий,работая самостоятельно, может выполнить эту работу за х дней, а второй - за y дней. Тогда производительность первого рабочего Р1 = 1/х, а производительность второго рабочего Р2 = 1/ y, а их общая производительность при совместной работе равна Р = Р1 + Р2
А (1) P(1/дн.) t (дн.) I + II 1 1/4 4 I 1/3 1/х 1/3:1/х = х/3 II 2 /3 1/y 2 /3:1/y= 2y/3
Тогда 1/х + 1/y = 1/4 х/3 + 2y/3 = 10
х/3 + 2y/3 = 10 х + 2y = 10 3 х + 2y = 30 х = 30 - 2y
ответ: первый рабочий,работая самостоятельно, может выполнить эту работу за 12 дней, тогда второй - за 6 дней, или, первый рабочий, может выполнить эту работу за 5 дней, тогда второй - за 20 дней.
x²+3x-1=0
D=b²-4ac
D=3²-4*1*(-1)=9+4=12
x1=(-b-√D)/2a x2=(-b+√D)/
x1=(-3-√12)/2 x2=(-3+√12)/2
x1=(-3-2√3)/2 x2=(-3+2√3)/2
a)((-3-2√3)/2)*((-3+2√3)/2)=(3*3-2√3*2√3)/2*2=(9-12)/4=-3/4=-0.75
6)((-3-2√3)/2+(-3+2√3)/2)²=((-3-2√3-3+2√3)/2)²=(-6/2)²=(-3)²=9
B)((-3-2√3)/2-(-3+2√3)/2)²=((-3-2√3+3-2√3)/2)²=(-4√3/2)²=(-2√3)²=12
r)(-3-2√3)/2+(-3+2√3)/2=(-3-2√3-3+2√3)/2=-6/2=-3
P.S.
только не уверен что уравнение правильное, потому что дискриминант не извлекается, хотя в действиях всё хорошо без корней проходит.)