Пусть одно из слагаемых равно x. Тогда второе равно 5-x. Произведение, о котором говорится в условии задается формулой . Нам нужно найти x, для которого это выражение оказывается наибольшим. То есть фактически нужно найти точку максимума функции
на интервале (0; 5).
Возьмём производную:
На заданном интервале производная имеет единственный ноль: точку x=1. При этом: f(0)=f(5)=0, f(1)=256. Значит x=1 - точка максимума на интервале (0; 5).
1 это первое слагаемое. Тогда второе, очевидно, равно 4.
ответ: 1 и 4
Запишем эту сумму для произвольного числа слагаемых:
Вычислим значения S(k) для нескольких значений k:
Тогда можно предположить, что
Но это ещё надо доказать. Используем индукцию. Выше было показано, что равенство верно для первых 3 натуральных k. Докажем, что из справедливости равенства для k=n следует справедливость равенства для k=n+1, тогда равенство можно будет считать справедливым для всех натуральных k.
Итак, предположим, что справедливо равенство
Проверим, верно ли, что
Подставляем сюда предыдущее выражение:
Получили верное равенство. Теперь можно вычислить значение нашей суммы:
4x-6=9-2(x во 2 степени+3х-3х-9)
4х-6=9-2х во 2 степени+6х-6х-18
4х+2х-6х+6х=9-18+6
6х=-3
х=-3/6
х=0,5