По т.Виета второй коэффициент с противоположным знаком ---это сумма корней т.е. 5+√2+5-√2 = 10 ---это (-b) b = -10 c = (5+√2)(5-√2) = 5² - (√2)² = 25 - 2 = 23 x² - 10x + 23 = 0 ---квадратное уравнение с такими корнями))) можно его решить и проверить...
1) Это верно даже для 3-х чисел...)) Из 3-х любых целых чисел всегда можно выбрать 2 таких, что они будут либо оба четные, либо оба нечетные. То есть 2 числа, допустим, четное и нечетное. Третье будет либо четным, либо нечетным. Поэтому среди 3-х любых целых чисел всегда можно найти пару четных или пару нечетных чисел.
Для чего нам это нужно? - С четными все понятно: 2n - первое число, 2(n+k) - второе. Тогда: 2n + 2(n+k) = 2*(n+n+k) = 2*(2n+k) Результатом умножения на 2 любого целого числа будет четное число.
Теперь рассмотрим 2 нечетных числа: 2n+1 - первое число, 2(n+k)+1 -второе число Сумма: 2n+1 + 2(n+k)+1 = 2*(2n+k)+2 - очевидно, также четное.
Таким образом, из 2016 целых чисел всегда можно выбрать 2 числа так, чтобы их сумма была четной.
2) Нет, нельзя. Если такое разбиение есть, то полная сумма 1 + 2 + ... + 21 разбивается на две равные части: 1. сумма всех максимальных чисел в каждой группе и 2. сумма всех остальных по всем группам.
Поскольку полная сумма 1 + 2 + ... + 21 = ((1+21) * 21):2 = 11 * 21 = 231 нечётна, то это невозможно.
1) Это верно даже для 3-х чисел...)) Из 3-х любых целых чисел всегда можно выбрать 2 таких, что они будут либо оба четные, либо оба нечетные. То есть 2 числа, допустим, четное и нечетное. Третье будет либо четным, либо нечетным. Поэтому среди 3-х любых целых чисел всегда можно найти пару четных или пару нечетных чисел.
Для чего нам это нужно? - С четными все понятно: 2n - первое число, 2(n+k) - второе. Тогда: 2n + 2(n+k) = 2*(n+n+k) = 2*(2n+k) Результатом умножения на 2 любого целого числа будет четное число.
Теперь рассмотрим 2 нечетных числа: 2n+1 - первое число, 2(n+k)+1 -второе число Сумма: 2n+1 + 2(n+k)+1 = 2*(2n+k)+2 - очевидно, также четное.
Таким образом, из 2016 целых чисел всегда можно выбрать 2 числа так, чтобы их сумма была четной.
2) Нет, нельзя. Если такое разбиение есть, то полная сумма 1 + 2 + ... + 21 разбивается на две равные части: 1. сумма всех максимальных чисел в каждой группе и 2. сумма всех остальных по всем группам.
Поскольку полная сумма 1 + 2 + ... + 21 = ((1+21) * 21):2 = 11 * 21 = 231 нечётна, то это невозможно.
т.е. 5+√2+5-√2 = 10 ---это (-b)
b = -10
c = (5+√2)(5-√2) = 5² - (√2)² = 25 - 2 = 23
x² - 10x + 23 = 0 ---квадратное уравнение с такими корнями)))
можно его решить и проверить...