попробую росписать, как найти точки пересечения графика с осями. Расмотрим ось икс: если график фуекции пересекает икс, значит икс будет равно некоторому значению, а игрек равно нолю. Теперь подставим в наш график 0=4х-4 или 4х-4=0 4х=0+4 4х=4 х=4:4 х=1 Получается точка с координатами (1; 0)
Рассмотрим ось игрек: если график функции пересекает игрек, значит будет теперь наоборот, игрек будет равно некоторому значению, а икс равно нолю. Подставляем: у=4*0-4 у=0-4 у=-4 Иммем еще одну точку (0; -4) Нарисуй этот график на онлайне и ты увидишь что график функции пересекает именно в этих точках оси координат.
Запишем уравнения касательной в общем виде:
yk = y0 + y'(x0)(x - x0)
По условию задачи x0 = 2, тогда y0 = 8
Теперь найдем производную:
y' = (x3)' = 3•x2
следовательно:
f'(2) = 3•22 = 12
В результате имеем:
yk = y0 + y'(x0)(x - x0)
yk = 8 + 12(x - 2)
или
yk = 12•x-16