1) 11х = 36 - х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
36 - x = - ( x - 36)
Уравнение после преобразования:
11x = - (x - 36)
Упрощаем:
12x = 36
Сокращаем:
12(убираем)x = 12(убираем) * 3
x=3
2) 9х + 4 = 48 - 2х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
48 - 2x = -2 * (x - 24)
Уравнение после преобразования:
9x + 4 = -2 * (x - 24)
Упрощаем:
11x = 44
Сокращаем:
11(убираем)x = 11(убираем) * 4
x=4
3) 8 - 4х = 2х - 16
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование левой части уравнения:
8 - 4x = -4 * (x - 2)
Делаем преобразование правой части уравнения:
2x - 16 = 2 * (x - 8)
Уравнение после преобразования:
-4 * (x - 2) = 2 * (x - 8)
Упрощаем:
-6x = -24
Сокращаем:
-6(убираем)x = -6(убираем) * 4
x = 4
За остальным, если желаешь - в ЛС.
пусть первое число - n, тогда второе n+1(так как по условию, у нас последовательные натуральные числа). Ну и опираясь на условие составим уравнение:
n(n+1) = 1.25n²
n² + n - 1.25n² = 0
-0.25n² + n = 0
n(-0.25n + 1) = 0
n = 0 или -0.25n + 1 = 0
-0.25n = -1
n = 4
Рассуждаем дальше. Первый корень сразу отбрасываю, так как 0 не является натуральным числом. таким образом, меньшее из чисел равно 4. Тогда второе число равно 4+1 = 5. Речь шла о числах 4 и 5.
log₂x⁷=3-6x
7*log₂x=3-6x
log₂x=(3-6x)/7
x=2^((3-6x)/7).