Центр вписанного треугольника находится в точке пересечения биссектрис углов а стороны являются касательными к этой окружности Пусть <B=120° ; O - центр окружности ; T - точка касания ; OT ┴ BO ;радиус_ OT=r ; BO=c. ИЗ ΔOTB : <OBT =1/2*<B= 1/2*120° =60°. r =OT =BO*sin<OBT =c*sin60° =c√3/2 или OT ┴ BO ; <BOT =90°-<OBT =90°-1/2*<B=90°-1/2*120°= 90°-60°=30°. BT = BO/2=c/2(катет против угла 30°). ИЗ ΔOTB по теореме Пифагора : r =OT =√(BO² -BT²) =√(c² -(c/2))²)=√ (c² -c²/4)=√(3c²/4)=c√3/2
Центр вписанного треугольника находится в точке пересечения биссектрис углов а стороны являются касательными к этой окружности Пусть <B=120° ; O - центр окружности ; T - точка касания ; OT ┴ BO ;радиус_ OT=r ; BO=c. ИЗ ΔOTB : <OBT =1/2*<B= 1/2*120° =60°. r =OT =BO*sin<OBT =c*sin60° =c√3/2 или OT ┴ BO ; <BOT =90°-<OBT =90°-1/2*<B=90°-1/2*120°= 90°-60°=30°. BT = BO/2=c/2(катет против угла 30°). ИЗ ΔOTB по теореме Пифагора : r =OT =√(BO² -BT²) =√(c² -(c/2))²)=√ (c² -c²/4)=√(3c²/4)=c√3/2
-4x+1=x³+7x²+7x+6
x³+7x²+11x+5=0
x₁=-5
x³+7x²+11x+5 I_x+5_
x³+5x² I x²+2x+1
2x²+11x
2x²+10x
x+5
x+5
0
x²+2x+1=0
(x+1)²=0
x₂=-1