30 и лучший ответ у натурального числа n ровно 3 различных простых делителя, у числа 31 n таких делителей тоже 3, а у числа 462 –– семь. чему равна сумма цифр наименьшего такого числа n.
У числа n три разных простых делителя. У числа 31n тоже три делителя. Значит, один из делителей числа n равен 31. n = 31*k1*k2. У числа 462n = 2*3*7*11*n = 2*3*7*11*31*k1*k2 - 7 делителей. Значит, k1 и k2 не равны ни 2, ни 3, ни 7, ни 11. Значит, наименьшие значения k1 = 5, k2 = 13. Наименьшее n = 5*13*31 = 2015, его сумма цифр равна 8.
По определению среднее арифметическое равно общей сумме членов деленное на их общее количество: откуда сумма n первых членов арифметической последовательности равна в частности отсюда второй член последовательности равен разность арифметической прогрессии равна значит искомая арифметическая прогрессия это арифметическая прогрессия с первым членов 2, и разностью арифметической прогрессии 4 (2, 6, 10, 14, 18, .....) ---------- /////////// маленькая проверочка схождения с формулой суммы членов прогрессии ////////// ответ: арифмитичесская прогрессия с первым членом 2 и разностью прогрессии 4
1) Раскрыть скобки: x^4-10x^3+35x^2-50x+24=0 2) Рассмотреть все числа на которые может делиться число 24. Это: 1,2,3,4,6,8,12,24 После проверки каждого числа подходит только 1. 1^4−10×1^3+35×1^2−50×1+24=0 60-60=0 3) Далее необходимо поделить уравнение x^4-10x^3+35x^2-50x+24=0 на (x-1) => (x^3−9x^2+26x−24)(x−1)=0 4) Повторяем шаги 2 и 3 относительно этого уравнения: x^3−9x^2+26x−24=0 В данном случае ответ будет (х-2) 5)В итоге имеем (x^2−7x+12)(x−2)(x−1)=0 6) Дальше я уже думаю Вы сами знаете как решать. 7) ответ: (x−4)(x−3)(x−2)(x−1)=0 х=1,2,3,4.
Значит, один из делителей числа n равен 31. n = 31*k1*k2.
У числа 462n = 2*3*7*11*n = 2*3*7*11*31*k1*k2 - 7 делителей.
Значит, k1 и k2 не равны ни 2, ни 3, ни 7, ни 11.
Значит, наименьшие значения k1 = 5, k2 = 13.
Наименьшее n = 5*13*31 = 2015, его сумма цифр равна 8.